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1.0 INTRODUCTION

This handbook 1is designed to provide environmental engineers and
planners with a guide for assessing and reporting uncertainties associated
with various types of emission estimates used in compiling emission
inventories. In particular, this handbook is intended to help engineers,
when faced with the task of estimating emissions from air pollution
sources, to quantify their perceptions of uncertainty in relation to their
estimates.

1.1 UNCERTAINTY: THE CONCEPTUAL BASIS

As a matter of simple fact, uncertainty exists in any measurement,
observation, engineering estimate, quantitative guess, or mathematical
model simulation. When a person estimates the distance to a nearby
building "by eyeball", his estimate will be more uncertain than if he uses
a measuring device. In contrast, a tool and die machinist should be able
to estimate the thickness of a particular piece of paper more accurately
than he can measure it with a foot ruler. A plant engineer using mass
balance principles together with fuel consumption and sulfur content data
may be able to estimate monthly or annual 502 emissions from a power
generating unit as accurately as (and perhaps more accurately than) by
calculating it from data generated by a continuous emission monitor.

An engineering estimate is not always inferior to a measured quantity
nor is an expert estimate always inferior to an emission value calculated
from some emission model. Uncertainty of an engineering estimate depends
on the quality of information available, whereas uncertainty of a measured
quantity depends on the precision and accuracy of the measurement device.
When a model is used, uncertainty depends on the accuracy of the model and
of the data input to the model.

In statistical terms, uncertainty of an estimated quantity may be
thought of as analogous to random errors in repeated measurements.
"Precision" indicates how close those measured values are to each other.
The term "uncertainty" is inversely related to precision. If discrepan-
cies between the individual results in a series of measurements are very
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small, the precision of measurement is said to be high, while the uncer-
tainty of the measurement is small.

On the other hand, not all error associated with measurement is
referable to defects in precision of measurement. An engineer can easily
measure a flat piece of material to a precision of 20.5 mm using a meter
rule; but, if the rule he uses is not accurate, his result will be inaccu-
rate, even though precise. Accordingly, if he is uncertain as to the
accuracy of his measuring stick, he must also be uncertain about the
accuracy of his result, regardless of its precision. This second type of
uncertainty is ascribed to systematic error, also called bias. It is
"systematic" in that it is characteristic of the particular tool or system
used to generate the estimate; it cannot be accounted for or corrected
without a specific investigation of that system.

It should be noted that most emissions estimation systems are not
based on repeated measurements, but rather on engineering understanding of
the problem, exemplified by an emission model. It has been observed,
however, that most, if not all, published studies of uncertainties in
emission dinventory work have addressed only the precision component of
uncertainty (e.g., EPRI 1981; SCAQMD 1982; Mangat et al. 1984; and Chun
1986) .

1.2 SUBJECTIVE PERCEPTION OF UNCERTAINTY

When an engineer estimates a quantity by measurement, engineering
analysis, or mathematical simulation, he ordinarily has a notion or belief
as to the accuracy of his estimate. This subjective notion of uncertainty
of the estimated value often finds expression in phrases such as "within *
10 percent", "about right", "perhaps an underestimate", and so on. This
handbook 1is dintended to distill this subjectively perceived uncertainty

onto a consistent, measurable probability scale.

Emission estimates are seldom made by direct measurement. Instead,
most emission estimates are usually arrived at through emission models or
algorithms which are supposed to show how emissions are related to process
variables. These commonly consist of emission factor equations relating
emissions to activity levels of particular emission sources or source
categories. Emission estimates are therefore subject to both random error
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(also called “precision uncertainty"), and systematic error (also called
"bias uncertainty" or simply "bias"). This handbook discusses these two
types of uncertainties and offers some practical guidance on how to
quantify them.

1.3 ANALYSIS OF UNCERTAINTY: AGGREGATION OF ELEMENTS

Suppose, for example, that emission rate X is calculated from an
emission model that is multiplicative in form and consists of factors X1,
X2 and X3. Further suppose that X1, X2 and X3 are all measured accurately
(i.e., with no bias) and their means X], 22, i3 and standard deviations
Sis Sps Sg are known. Then, is it possible to calculate the precision
uncertainty of the emission rate? Yes, according to the statistical
formula for a product of mutually independent variables, the precision

uncertainty of X = X] X2 X3 is given by:
12 _ g2 T2 5 12
(s/X)" = (s4/X)" + (s,/X)° + (s3/X3) (1-1)

Although Equation (1-1) is based on the approximate formula that is
good only when (s/X) is much less than unity, it is assumed to hold for
this particular example. Under this assumption then, does the precision
uncertainty calculated from Eq. (1-1) really reflect uncertainty of the
estimated emission rate? The answer is yes, provided that uncertainty of
the emission estimate arises only from precision uncertainties of the
estimated means 71, 72, and 23.

However, in most practical cases, other uncertainties enter because
the emission model is only a crude approximation of the relationship
between pollutant emission and its contributing factors. Moreover it not
infrequently happens that an emission model may be accurate for the
situation under which the model was developed, but grossly inaccurate for
another situation to which the model is being applied. Uncertainty of the
emission estimate due to this model representation inaccuracy cannot be
estimated from uncertainties of the model parameters alone.

Since practically no emissions in an inventory are directly measured,
the uncertainty due to possible model inaccuracies may be very important.
It can be adequately assessed only by experts who are familiar with the
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physical principles which operate to cause pollutant emissions and with
the models and algorithms which have been used to simulate those
principles. Although detailed analysis of this sort can be time-consuming
and costly, the same experts who have the necessary understanding to
achieve such an analysis will often have useful insights into the possible
sources of bias 1in particular model applications. In evaluating
uncertainties of emission estimates for inventory purposes, this type of
uncertainty must always be considered and, where possible, the opinions of
qualified experts should be obtained.

Therefore, the cruxes of uncertainty evaluation are:
1. How to project subjectively perceived uncertainty onto a uniform

and consistent uncertainty scale;

2. How to Tlink this subjectively perceived uncertainty to
statistically determinable uncertainty; and

3. How to track uncertainties in individual estimates of emissions
and emission model parameters through various multiplicative and
additive processes, which are involved in emission 1inventory
calculations.

1.4 A FRAMEWORK FOR EVALUATING INVENTORY UNCERTAINTY

Pollutant emissions from many point, area, and mobile sources have
been estimated and compiled in inventories at all geographical levels by
air pollution control agencies from the U.S. Environmental Protection
Agency (EPA) to local air pollution control districts. These emission
inventories, developed at great expense, are probably the most important
practical tools available to many air pollution control agencies. Despite
this importance, there is no widely accepted, mathematically sound proce-
dure to estimate how accurate individual emissions estimates are or how
accurate an inventory is as a whole.

Therefore, this handbook is intended to provide engineers and plan-
ners with mathematically sound, yet practical procedures to characterize
the uncertainties of both the individual emissions estimates and the total
inventory. Since nearly all emissions estimates are performed through
engineering calculations instead of direct measurements, there is ordi-
narily no hard evidence to indicate their accuracy. Under these circum-
stances, it is particularly important to capture and utilize the analyst's



understanding as to the accuracy of his models and algorithms as well as
his estimated values.

This handbook offers a method by which the opinions of experts about
bias uncertainty in estimating emissions, from individual sources or from
source categories, can be quantified and presented for ready comparison
with precision uncertainty and other uncertainty components. Thus quan-
tified, this uncertainty component will be referred to as "subjectively
perceived bias uncertainty”.

Since subjectively perceived uncertainty varies from analyst to
analyst, this document provides a plausible (although unproven) method by
which each analyst will undertake a specific mental exercise to distill
his perceived uncertainty onto a probabilistic scale. This mental
exercise is exemplified in a graphical procedure which requires the
analyst to estimate the "probability" or "odds" that a "true value", i.e.,
the unknown but correct real-world value, would be below each of two
thresholds. These thresholds are computed from a set of three plausible
emission values: the basic estimate, an upper plausible estimate, and
a lower plausible estimate.

Once uncertainties of individual estimates and model parameters are
evaluated either statistically or subjectively, the analyst must calculate
the overall uncertainty of an aggregated total or that of a source emis-
sion estimate from the emission model. Presented in Sections 2.2 and 2.3
are statistical formulas, and their underlying concepts, by which to
calculate the overall uncertainty of the final estimate from the
individual uncertainties as they propagate through the emission
calculations.

Similar to the way in which a good emissions inventory is developed,
uncertainty estimates for an inventory should be developed in a strategic
manner:

o First, a preliminary uncertainty is estimated for every source
category;

o Second, important source categories and suspected categories are
identified for further analysis;

o Third, additional efforts are strategically allocated to selected
source categories where refinements in the estimates appear most
likely to reduce overall uncertainty in the jnventory;
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o Fourth, task forces are formed to evaluate and refine uncertainty
estimates of those selected categories;

o Fifth, uncertainty estimates for individual source categories,
aggregated source categories, and for an entire inventory are
compiled; and

o Sixth, salient features of inventory uncertainties are summarized

and any problem areas are identified for future analysis.

Basic concepts and statistical theories dinvolved in uncertainty
estimation are discussed in Section 2.0 while illustrative examples of
uncertainty estimation are given in Section 3.0 for point, mobile, and
area sources. Section 5.0 discusses a few candidate methods by which the
uncertainty of an emission inventory as a whole can be computed and
reported.
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2.0 METHODS FOR EVALUATING UNCERTAINTY

This section describes a method for establishing the uncertainty in
the estimated mean of any randomly varying quantity, such as emission
estimates generated for a given source category. Other examples of random
variables are the emission factors and activity rates that are typically
used in calculating those emissions. The uncertainty associated with
these quantities has two components: (1) precision error, which indicates
the imprecision in the estimated mean; and (2) bias, which reflects the
inaccuracy of the estimated mean with respect to the true mean, which is
always unknown.

Section 2.1 discusses a few basic concepts that are useful for
determining the uncertainty of any estimated quantity. Section 2.2
presents statistical formulas for calculating individual variable uncer-
tainties and for calculating errors propagated through the additive or
multiplicative processes that may be used in estimating emissions or
aggregating emissions estimates.

2.1 BASIC CONCEPTS FOR EVALUATING UNCERTAINTY

2,1.1 SUBJECTIVE-TO-OBJECTIVE LINKAGE

Like drivers who can estimate distance well enough to avoid traffic
accidents, engineers are capable of estimating the range in which the true
answer to an engineering problem is likely to be found. Because of this,
it is possible for an individual experienced in a particular subject area
to subjectively gauge the probability that the true value will be encom-
passed by a given range around an estimate of that value. Such a subjec-
tively determined probability becomes increasingly accurate as the
individual's knowledge and understanding of the matter increases.

This capability is useful because usually, variables in the emission
models employed in inventory work are not measured repeatedly, and their
precision is, therefore, not known.

The standard statistical treatment of the result of a series of

measurements in which the individual values vary somewhat (from unassign- -

able causes) is as follows: The set of measurements is considered to be a
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random sample from a practically infinite set of possible measurements
which (conceptually) could have been made, and it is assumed that the
distribution of values in that infinite set would be Gaussian or "normal".
The mean of the distribution of the conceptual infinite set is referred to
as the "true mean". It is, of course, unavailable for study (since the
actual set of measurements is never infinite). However, the mean of the
values in the actual sample can serve as an approximation of the "true
mean”. Similarly, the standard deviation of the sample set can be taken
(after adjustment for the sample size) as an approximation of the "true"
standard deviation of the dimagined infinite set. In particular, 95
percent confidence 1imits on the true mean are, in theory, given by taking
a = 0.05 in the following formula:

- -3 -3 -
m ta/2,n (sn )<|1<n14-ta/2,n (sn <) (2-1)
where u = true mean of the quantity
m = sample mean of the quantity
s = sample standard deviation of the quantity
n = sample size

taon © t-statistic for 100 (1-a) % confidence level for the sample
size n.

In short, Eq.(2-1) indicates that the probability that the true mean
u is in the range of m = = t_, n(sn'%) is (1-a). For n >30 and a =
0.05, equation (2-1) reduces (approximately) to:

3 3

m- 2sn “<u<m + 2sn_ (2~-2)
Eq. (2-2) indicates that for a large sample size (n > 30) the true mean

will be found in the range m % 2sn™% in 95 out of 100 chances.

In emissions inventory work, many quantities are deduced from other
related quantities or computed through engineering analysis. Some quan-
tities are estimated from survey results or repeated measurements, with
sample sizes which are often less than 30. Under these circumstances,
uncertainty (strictly speaking, "precision uncertainty") of an estimated
quantity depends on such statistical parameters as those noted above,
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Furthermore, this type of analysis is not even applicable to many param-
eters derived from engineering principles.

To alleviate this difficulty of precisely describing uncertainty
mathematically, a new parameter, s', is defined such that the true mean,
u, is expected, in 95 out of 100 chances, to be within the following range
about the estimated value, m, of some emission-related quantity:

m-2s'<u<gm + 2s' (m: unbiased estimate) (2-3)

Unlike Eq. (2-2), Eq. (2-3) is applicable to any estimated value of a
random variable. The new parameter s' is considered to be a quarter-width
of the 95 percent confidence interval around the estimated value., It is
understood that s' is not a statistical parameter in the conventional
sense. It is rather a parameter associated with the probability that the
true value u is in the range m * 2s' in 95 out of 100 chances.

When a quantity is estimated by repeated measurements or a statis-
tical survey, the new parameter s' is explicitly related to the following:

S' = tg_op5,n (SN %) (2-4)

In the equation, s is the sample standard deviation of samples of size n,
while t is the t-statistic (whose value can be found in most statistical
textbooks) for a = 0.05 and sample size n.

When the estimated value m is arrived at through engineering analysis
or manipulation of external data for which the gathering method is
unknown, the corresponding parameter s' must be estimated from the ana-
Tyst's understanding in the estimated value. To minimize any conscious or
unconscious cognitive bias on the part of the analyst, he is required to
undertake a "debiasing” reasoning process in which his true subjective
belief is measured on a probabilistic scale. The result of this process
js an evaluation, in quantitative terms, of the analyst's subjectively
perceived precision uncertainty.



2.1.2 PRECISION AND BIAS UNCERTAINTY

The uncertainty discussed in the preceding section was limited to
precision uncertainty, that is uncertainty caused by random errors. The
other type of uncertainty that may be found in emissions estimates is
termed “"bias uncertainty". This uncertainty is principally caused by
systematic errors in repeated observations or by under- or over-estimates
of the quantity of interest by some engineering analysis or model simula-
tion. Bias uncertainty is related to “accuracy" in that it refers to how
close the measurement is to the true value. On the other hand, precision
uncertainty is similar to "“precision" which refers to how close the
measured values are to each other.

However, both bias and precision uncertainties are different from
their statistical counterparts in that the former apply not only to errors
in the repeated observations, but also to misestimates and impreciseness
of the estimated values that may be arrived at by engineering analysis.

Suppose that the estimated value m 1is found to contain both the
precision uncertainty measured as s' and the bias uncertainty measured as
B. Then, what is the range that contains true value u in 95 out of 100
chances? One obvious range is given by:

m-|Bl~ 2s'<u<m +|B|+ 25’ (m : biased estimate) (2-5)

where | B| is the absolute value of B whose sign is yet unknown.

The magnitude of the above range is (2[Bl+ 4s'). Is there any way to
reduce this range so that the true value is trapped in a tighter range at
the same confidence level as before? Yes, it is possible. Consider the
following:

First, define an unbiased sample mean as:
m' =m+B (for B >0) (2-6)

m'=m-B (for B < 0) (2-7)




Then, the range in which true mean u is expected to be found in 95
out of 100 chances is given by:

m -2s'<u'<m+ 2s' (m* : unbiased estimate) (2-8)

Using the unbiased estimate m', the range of uncertainty reduces to
4s' instead of (2|B|+ 4s') with the biased estimate m. This reduction in
the uncertainty range is brought about by separating the bias component
from the overall uncertainty in the estimate. Therefore, in this hand-
book, precision uncertainty and bias uncertainty are always treated
separately. This separate treatment of precision and bias uncertainty
also makes it possible to track errors propagated through both multiplica-
tive and additive processes involved in emission calculations and aggre-
gations.

2.1.3 AN ANALOGY: MARKSMANSHIP WITH CANNON

This handbook addresses the uncertainty of an emission estimate in
both precision and bias uncertainties. Since systematic errors propagate
differently from random errors through individual emission calculations
and aggregations of individual source emissions into a higher source
category, any uncertainty estimation method based on precision uncertainty
alone is doomed to fail in fully addressing uncertainties of emission
estimates and those of resulting emission inventories.

Figure 2-1 illustrates an analogy of emission estimation to cannon
firing. Based on estimates of the distance to the target and the meteo-
rological condition under the situation, an artilleryman sets the angle
and direction of the cannon to fire at the target.

The objective of the artilleryman is to land the cannon shells within
a certain area around the target, as shown in the figure. The precision
of the cannon is only one of the factors that determine whether the shells
fall in the target area. Other determinants would include the correctness
of a distance estimate made by a frontman, the accuracy of the meteorolo-
gical condition predicted by a meteorologist, and the cannon setting made
by an artilleryman.
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By analogy to this example, it is suggested that uncertainty of
an emission estimate can not be fully ascribed only to that associated
with the emission model used or with the variables used in the model. The
uncertainty would also be dependent upon the accuracy of the input data
used and the correctness of the assumptions or the premises under which
the analyst calculates the emission. As in firing cannon, the most
important concern in estimating emissions should be whether the estimate
is a correct estimate; that is, whether, 1ike the cannon shell, it lands
within the target area.

In the case of cannon firing, a spotter identifies whether shells are
landing in the target area and whether a hit has occurred. According to
the spotter's information, the artilleryman corrects the cannon setting to
improve the chance of hitting the target. Uncertainty analysis of the
emission estimate should be made analogously to the relationship between
the spotter and the artilleryman. Specifically, the primary objective of
uncertainty analysis of emission estimates should be to determine whether
the estimates of various source emissions are in the right range and
whether the uncertainties thus determined are acceptable for each use of
individual emission estimates and for the emission inventory as a whole.

The crux of the problem of determining uncertainties of emission
estimates is how to set up an uncertainty estimation problem so that an
emission expert can play the same role in uncertainty determination as
does the spotter in cannon firing. Keeping this analogy in mind, users of
this handbook are encouraged to consider uncertainty problems in perspec-
tive of an entire emission estimation process rather than in isolation.

2.2 OBJECTIVE METHOD FOR COMPUTING UNCERTAINTY

A review of inventory methods and algorithms currently in use shows
that many are quite involved. The individual parameters, for instance,
range from simple discrete datum points to parameters of complex equations
encompassing power terms, summations, ratios, and so forth. Nevertheless,
all of these algorithms appear to be reducible to an archetypal emission
model of the form:

EE = (AR) (AF) (EF) (CF) (2-9)
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where

EE
AR
AF

emission estimate for the category;
activity rate, e.g., material or fuel throughput, VMT, etc.

adjustment or allocation factor (which equals unity if not
needed) ;

emission factor in terms of emissions per unit of AR; and

control factor, which equals one for no control and zero for
full control.

EF
CF

When some or all of the factors on the right side of Eq. (2-9) are
measured or observed repeatedly to estimate their values, an objective
method based on a theory of statistical distribution becomes applicable to
the calculation of precision uncertainties of individual variable esti-
mates and their aggregates. Among many statistical distributions, two
well-known theoretical distributions have been used almost exclusively for
uncertainty analyses of emissions estimates: normal distribution and
lognorma1 distribution. In the latter, logarithms of original data values
are distributed normally. This handbook addresses these two distributions
only.

In most emission estimates, only one or two factors in the general
emission model given by Eq. (2-9) have sufficient numbers of measurements
or observations so as to objectively compute their precision uncertainty.
Furthermore, the total uncertainty of an emission estimate includes not
only precision uncertainty, but also bias uncertainties in dindividual
factors and representation errors in the emission model. Since there are
very few statistical methods that are available for determining bias
uncertainties and representation errors, there is clearly a need for a
method of assessing the subjectively perceived uncertainty and including
it in the total uncertainty of any emission estimate.

Nevertheless, users of this handbook are encouraged to compute
precision uncertainties of individual factors and emission estimates
whenever adequate observational data are available. Although this preci-
sion uncertainty alone does not represent, in general, the overall uncer-
tainty of an emission estimate, it does provide a lower bound of the
overall uncertainty of an emission estimate. Therefore, precision uncer-
tainty for the emission estimate, computed in this manner, can be used to



check whether a subjectively assessed value for the overall uncertainty of
the emission estimate is large enough to be plausible. This type of check
will be useful for controlling unrestrained use of subjective methods of
assessing overall uncertainty (including both precision and bias uncer-
tainties) of emission estimates.

2.2.1 UNCERTAINTY FOR A NORMALLY DISTRIBUTED VARIABLE

When measured values of a quantity scatter around its sample mean
rather symmetrically, the quantity can be said to be normally distributed
or its distribution is nearly normal. A normal variant, X, with mean u

2

and variance ¢~ is expressed as:

X=u+o0ol ' (2-10)

where U is a standard normal distribution with mean 0 and variance 1,
namely, U(0,1). In a similar notation, the normal distribution of X is
expressed as N(u,oz). Given a set of observational data, (X1, X2’ eeees
Xn), the population mean u gnd variance 02 are estimated by a sample mean,
m, and a sample variance, s~, which are given, respectively, by:

3
1

SUM (X.)/n (2-11)

SuM (X, - m%/(n-1) (2-12)

w
It

where n is the sample size, i.e., the number of observations. The square
roots of the variances, namely and s, are called, respectively, popu-
lation standard deviation and sample standard deviation.

2.2.1.1 Characteristics of Normal Distribution

One characteristic of a normal distribution is the symmetric nature
of the distribution around the mean. When actual data values are plotted
on a graph, many data points are clustered near the sample mean, with
progressively fewer data points as the distance between a data point and
the mean increases. Figure 2-2 shows an example of a quantity which
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should have a normal distribution. Here, 100 repeated measurements of a
ring are plotted in a histogram form.

The data in Figure 2-2 are plotted on “"normal probability paper" in
Figure 2-3. By definition, a normal distribution is expressed by a
straight 1ine on normal probability paper. In the figure, error bounds
around the sample mean, m, with the 95 percent confidence level (hereafter
called "95 percent confidence interval") are shown for three different
sample sizes, n = 100, 10 and 1. The confidence intervals were computed
using Eq. (2-1) with the sample mean m = 20.03 mm and the sample standard
deviation s = 0.48 mm. It should be noted that the confidence in an
estimate increases dramaticaiiy from the estimate based on a single
measurement to that based on 10 repeated measurements and to the one based
on 100 repeated measurements, as exemplified in the figure by the reduced
confidence intervals for n = 10 and n = 100.

The above example illustrates the power of repeated measurements for
reducing errors in an estimate. Although many emission estimates are
arrived at by engineering estimates or with very few measurements, it is
highly desirable that at Tleast some factors in an emission estimation
formula be measured repeatedly to increase confidence in their estimates.

2.2.1.2 Error Propagation in Normally Distributed Variables

Now, to define precision uncertainty first consider a random variable
X with mean u and variance 02. Then, standard deviation o is usually
taken to be the precision uncertainty of the mean u. Some may consider
the ratio of to u to be a better indicator, however:

CV = o/u (2-13)
where CV is called a "coefficient of variation".

This coefficient of variation is used as a measure of precision
uncertainty of an estimated quantity in this handbook. Since CV is a
ratio, it is dimensionless and independent of the magnitude of the mean.
Thus, CV can be used to compare the relative precision uncertainty of one
estimated quantity with that of another quantity even when the magnitudes
of the two quantities are vastly different.
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Precision Uncertainty in Multiplicative Process

In Eq. (2-10), the emissions are formulated as the product of the
four simple variables: activity rate, adjustment factor, emission factor
and control factor. In actual practice, however, emissions are often
estimated as products of many variables:

X = XXo o v s Xn (2-14)

where X is an emission rate at a source or a group of sources, and X., X

s . w3 Xn are pertinent model factors.

1 T2

In practical terms, precision uncertainty of X can be computed only
when X1, X2, . o e Xn are mutually independent. Under this independence
assumption, one can write:

E(X) = E(XpXpe « « X))

= E(X-I) E(Xz) e s . E(Xn)

SUp Uy ..U (2-15)
VAR(X) = EL(X X « o X5 1 - [E(XX, o o . %)

= EXDEXD) LB - (uqu, e e u )

_ 2 2 2 2

- (u]u2 .« . . u (2-16)

CV(X) = SQRT [VAR(X)]/E(X)

(2-17)
= SQRT [(1 + 012/u12)(1 + 022/u22) e oo (14 an;unz) - 1]

In the equations, E{(X) means mathematical expectation of X and yields
the mean of X. VAR(X) is the variance of X; its square root yieldso , the
standard deviation of X. CV(X) is the coefficient of variation for X and
indicates how large the spread of the distribution is relative to the
mean. The Tletters u; and o, are the mean and the standard deviation of

Xi'




Suppose that ui's and Oils are the same for all Xi's. Then by
letting p = oi/ui’ Eq. (2-18) reduces to:

CV(X) = SQRT [(1 + p2)" - 1] (2-18)

The relationship between an aggregate uncertainty CV(X) and individual
uncertainty p is plotted in Figure 2-4 by using Eq. (2-18).

Figure 2-4 shows that the relative uncertainty of an aggregate
variable X is always equal to or greater than that of an individual factor
and becomes much greater as the number of factors increases. For example,
for the individual uncertainty p = 0.5 and the number of factors n=7,
which is not particularly large for an emission estimating model, the
figure yields the aggregate uncertainty CV = 1.9. This is nearly four
times as large as the individual factor uncertainty.

Precision Uncertainty in Additive Process

In many source categories, total emissions for the source category
are estimated as the sum of individual source emissions or the sum of
subregional emissions. In these additive processes, uncertainties of
jndividual emissions estimates propagate differently from those in a
multiplicative process. Unlike the multiplicative case, uncertainty of an
aggregated emissions estimate in an additive process can be computed for
both mutually uncorrelated (i.e., independent) cases and mutually cor-
related cases:

X =X+ Xp + ¢ v o 4 xn (2-19)
E(X) = E(X1 + X2 + .. . 4 Xn) (2-20)
=U-|+U2+...+Un
VAR(X) = SUM ( 0i%) + 2 SUM ( 0..) (2-21)
i<j W

The second term in the right side of Eq. (2-21) indicates that covariance
oij's between variables X1 and Xj for all i's less than j are summed.
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Eq. (2-21) can be rewritten by using a correlation coefficient Cij
instead of covariance Gij as:

VAR(X) = SUM ( 0.2) + 2 SUM (c.. 0. 0.) (2-22)
i 7§ 91

To examine some properties of Eq. (2-22), let 0, =0 and cij = ¢ for all
i less than j. Then, Eq. (2-22) reduces to:

VAR(X) = SUM ( 012) +2cSM (0, o))
i<j J
= SUM [( oiz) +2 S (0,001 - 2(1-c)SUM( 0, 0 )
i< J i< J
= [SUM (0,)1% - 2 (1-c) suM ( 0,0.)
i<j J
= (n0)? - 2 (1-c) (}) 02
. 2 1
=(no)° (1 - (1-¢)(1 - ﬁ)) (2-23)
Similarly, let u; = u. Then, a coefficient of variation for the aggre-

i
gated variable X is given as:

Cv(X)

SQRT (VAR(X)) / E(X)
(no/nu) SQRT [ 1-(1-c) (1 - 1) 1

pSRT [ 1-(1-¢) (1-1)7] (2-24)

where p = o/u is the uncertainty of each individual variable Xi' From
Eq. (2-24), relationships between CV(X) and p can be derived for the
following special cases:

CASE I: Mutually independent variables (c = 0)

cv(X) = p n"t (2-25)
CASE 1I: Perfectly correlated variables (¢ = 1)

CV(X) = p (2-26)
CASE III: Large number of variables (n — o )

CV(X) = pc—% (2-27)




Eq. (2-25) indicates that the relative uncertainty of the sum of
emissions is less than those of individual emissions estimates and pro-
gressively decreases as the number of individual emissions that are added
together increases. On the other hand, Eq. (2-26) indicates that if
emissions are perfectly correlated with each other, the sum of emissions
has the same uncertainty as the individual emissions estimates. This
difference between independent variables and correlated variables seems to
be crucial in computing uncertainty of an emissions inventory. One needs
to know the likely correlation between emissions in different sources and
source categories in order to estimate the uncertainty of an aggregate
emissions estimate.

Eq. (2-27) Tlinks the independent, Eq. (2-24), and dependent, Egq.
(2-25), relationships by a correlation coefficient ¢ for a large n (n=1000
is Tlarge enough to be accurate). Figure 2-5 shows the relationships
between the uncertainty of an aggregate variable and that of an individual
variable for various degrees of correlation among the variables. It
should be noted that in this graph and in Eq. (2-26), all variables (not
Just two variables) are correlated with each other with a designated
correlation coefficient. It should also be remembered that equal correla-
tion among many variables is possible only for a positive correlation
coefficient.

Figure 2-5 shows that if a large number of individual source or
source category emissions are uncorrelated with each other (i.e., ¢=0),
uncertainty of the sum of those emissions goes to zero regardless of
uncertainty of the individual estimates. On the other hand, if individual
emissions are totally correlated with each other (i.e., c= 1), uncertainty
of the sum of those emissions remains the same as that of individual
emissions. Uncertainty of the sum of partially correlated emissions falls
in between these two extremes. It should be noted that even under a
lightly correlated case of ¢ = 0.3, uncertainty of the sum of emissions
remains as high as 55 percent of those of individual emissions whereas
with mutually independent (i.e., uncorrelated) emissions it decreases to
zero percent. Since emissions in different source categories or emissions
from different sources in one source category are expected to be at least
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partially correlated, the use of the assumption of independence may lead
to an unrealistically small uncertainty value for an aggregate estimate.

Figure 2-6 provides a relationship between uncertainty in mutually
uncorrelated individual estimates and that in aggregated estimates for
various numbers of aggregated sources or source categories. For totally
uncorrelated emissions, the uncertainty in an aggregate estimate becomes
progressively smaller relative to those in the individual estimates as the
number of sources to be aggregated increases. As the number grows infi-
nitely large, uncertainties in individual emissions cancel each other,
tending to yield zero uncertainty in the aggregated emissions.

2.2.2 UNCERTAINTY OF LOGNORMALLY DISTRIBUTED VARIABLE

The natural logarithm of a lognormally distributed random variable is
normally distributed. Since the logarithm of a product of factors is
equal to the sum of the logarithms of individual factors, the lognormal
distribution may be considered as the multiplicative analog of the normal
distribution. )

Indeed, many physical processes encountered in emission inventory
studies are best described by Tognormal distribution. Increasingly, it is
being found that the outputs of many physical processes encountered in
environmental pollution, particularly in emission of pollutants to the
atmosphere, are lognormally distributed or are more nearly lognormal than
normal. It is a distribution that engineers and planners in emission
inventory studies must familiarize themselves with.

2.2.2.1 Characteristics of Lognormal Distribution

Figure 2-7 shows frequency curves for the standard normal and log-
normal distributions. As seen from the figure, the lognormal distribution
is characterized by positive values only and a heavy tail having large
positive values. In a lognormally distributed variable, the arithmetic
mean is always greater than the median, which happens to be equal to the
geometric mean. On the other hand, the mode (that is, the value occurring
at the greatest frequency) is always less than the median.
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The geometric mean, mg, and geometric standard deviation, sg, of a
lognormal variate, X, are defined as:

exp [SUM (In X)/n] (2-28)

3
]

S

g = &P [SUM (In X) - 1In mg)2 /n]o'5 (2-29)

For a lognormal distribution, the arithmetic mean, m, geometric mean,

mg, standard deviation, s, and geometric standard deviation, sg, are
related as follows:

= exp [0 (sZ/m2 + 1)] (2-30)

7]
|

m

2
g=m / [exp (0.5 1n sg)] (2-31)

Although a lognormal distribution and a normal distribution are, in
principle, quite different, the two distributions are actually quite
similar if the coefficient of variation is much smaller than unity. Let

Xn and X] be normal and lognormal variates, respectively. Then, using a

standard normal distribution U, the distribution of a normal variate, Xn’
is expressed as:

Xn = u +ol (2-32)

where u and are the mean and standard deviation of Xn'
Similarly, the lognormal variate, X1, is expressed as:
Xy =uexp (ol/u) (2-33)

Using a Taylor expansion of the exponent, Eq. (2-33) is rewritten as:

Xp = uf 1+ (07U + 0.5 (/) W%+ ...} (2-34)
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If the coefficient of variation, CV = o/u, is much smaller than
unity, Eq. (2-34) reduces to

X] =u + ol (2-38)

This equation for X1 is the same as Eq. (2-32) for Xn’ This shows
that when the coefficient of variation for a lognormal variate, X, is
small, the distribution can be approximated by a normal distribution. In
other words, it is not important to know whether the distribution is more
nearly normal of Tognormal, as long as the coefficient of variation is
small.

Based on the above analysis, this handbook recommends that the
uncertainty calculation formulas for a normal variate be used as long as
the coefficient of variation is less than 0.3. At CV = 0.3, the numerical
error using Eq. (2-35) instead of the defining equation, Eq. (2-33) is
only 5 percent at one standard deviation (i.e., U = 1) from the mean.

2,2.2.2 Error Propagation in Lognormally Distributed Variables

For normal variates, there is a simple algebraic formula for comput-
ing errors propagated through sums or products of many variables. For
lognormal variates, however, no such formula exists. To overcome this
lack, this handbook provides a computer program for simulating distribu-
tions in order to compute uncertainties associated with individual vari-
ables and their aggregates (Appendix A). The program generates randomly
selected values, R, for a normal variate, X, according to:

R=A+B*RN (2-36)

where A and B are, respectively, the specified mean and standard deviation
of X, and RN is a random value drawn from a standard normal distribution.

Similarly, random values, R, for a lognormal variate, X, are gener-
ated from:

R =exp (A+B *RN) (2-37)
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The program generates 1000 random values from one simulation run,
repeats the simulation ten times, and generates percentiles and distribu-
tion parameters for averages of the ten simulation results. The distri-
bution parameters calculated are:

arithmetic mean

arithmetic standard deviation
geometric mean

geometric standard deviation
minimum

max imum

The basic input parameters to the program are:

A = Mean of a normal variate, N (A, B)

B = Standard deviation of a normal variate, N (A,B)

C = Flag for a desired distribution (0 for a regular distribution
and 1 for a positive-only distribution)

D = Distribution type (0 for a normal distribution and 1 for a
lognormal distribution)

E = Variable combination (0 for additive combination and 1 for
multiplicative combination)

F

The number of random variables.

Since an aggregative combination of two random variables (e.g., X1 +
Xz or X]XZ) does not yield either a normal or lognormal distribution, the
program has a subroutine that describes the resulting distribution by
specifying 19 pre-selected percentiles (0.05, 0.1, 0.2, 0.5, 1, 2.5, 5,
16, 30, 50, 70, 84, 95, 97.5, 99, 99.5, 99.8, 99.9, and 99.95). Should
the resulting distributions be used for a further combination with another
variable, say, X3, random values for the resulting distribution are
generated by repeatedly applying a random pointer selected from a uniform
distribution, U(0-1), to the quantile (percentile) data set. These random
values are then combined with random values generated from the
distribution of X3 to yield a new distribution for the combination of X
X2’ and Xs.

'I’

Users of this handbook are cautioned that the program listed in
Appendix A is for research use only. It is not designed for routine use
as many packaged programs are. To use the program in any other way than
as described above, the user must write his own main program. However,
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since the program is written in completely modular format, that task
should not be very difficult.

2.3 SUBJECTIVE METHOD FOR ASSESSING UNCERTAINTY

Although the uncertainty estimation procedures described in Section
2.2 are mathematically definitive, they are applicable only to precision
uncertainties or random errors and not to errors caused by biases. As
discussed in the Cannon Firing example (Section 2.1.2), uncertainties of
emission estimates can not be fully described without quantifying bias
uncertainties in those estimates. Further support for the importance of
this statement can be found in the report of the Nationai Acid Precipita-
tion Assessment Program (NAPAP), published by the U.S. Environmental
Protection Agency (EPA 1986).

In the NAPAP report, quantitative estimates of emissions uncertain-
ties for the 1980 NAPAP Emission Inventory were developed by applying a
conventional statistical concept -- error propagation formulas for mutu-
ally independent, normally distributed variables -- to the emission
inventory case. Initial uncertainty estimates for individual source
categories were provided by a panel of emission inventory experts. Then,
uncertainties of various aggregated source categories and for the entire
inventory were computed under the following assumptions:

o Emission calculation parameters are independent, that is, they do

not covary.
o Emission factors represent true mean values.

0 All estimates are unbiased.

0 The emission parameters can be treated as random variables which
are approximately normally distributed.

o No coding or transcription errors are present.

o The data are complete; no emissions data, emissions sources, or
emissions source categories are missing.

Starting with seemingly reasonable uncertainty estimates at a basic source
category Tlevel, uncertainties of higher source categories decreased
steadily as aggregation of source categories progressed. In the end, the
study found:

o The values of uncertainty estimates for national Tevels of aggre-
gation appear to be unreasonably small;
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o Although uncertainty values for SO, emissions were set to be
higher than those for NO, emissions” at a basic source category
level, the opposite relat%&nships emerged at national levels; and

o To resolve the above inconsistencies with our common sense under-
standings of emission estimation, the methodology must be expanded
to incorporate bias, coding, and emission errors.

The authors of this handbook have arrived at similar conclusions
through extensive review of the literature and through mental experiments
on uncertainty estimation. A1l literature on emission uncertainties
reviewed by the authors framed uncertainties in individual emission
estimates, as well as in entire inventories, in terms of precision uncer-
tainties or random errors only. In reality, however, errors in emission
estimates have a deterministic component (exemplified in biases) as well
as a probabilistic component (exemplified in random errors). Since biases
and random errors have distinctly different propagation characteristics,
any uncertainty assessment efforts based on precision uncertainties alone
can only result in incoherent and idiosyncratic results, as reported in
the NAPAP study. In the hope of making a useful contribution on this
problem, VRC has devised and tested several subjective methods of
determining uncertainties in emission estimates on a very limited level.
After a few trials and errors, a plausible but unproven method of
delineating both precision and bias uncertainties of a given
emission estimate, utilizing expert opinion, was devised and is offered in
this handbook.

2.3.1 PREPARATION OF SUBJECTIVE ASSESSMENT TOOL

To make a rational judgment as to reliability and validity of an
emissions estimate, an evaluator must know what set of assumptions and
premises were employed in generating the estimate, as well as what kinds
of data were used and what calculations were made. Without such basic
information on the estimate, quantification of precision and bias uncer-
tainties would vary greatly from one evaluator to another depending on
their perception and knowledge of emission factors, activity levels and
control efficiencies for the emission source.
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To minimize the variation of subjectively assessed uncertainties from

one evaluator to another, this handbook recommends:
1. An analyst who participated in deriving the emission estimate
shall document concisely yet comprehensively the emission estima-

tion process, the data used, and the assumptions and premises
employed; and

2. An evaluator or evaluators shall be selected from emission
inventory experts who have broad knowledge of pollutant emissions
but have not participated in preparing the estimates in question.

Although the analyst might be the same person who computed the emissions
or made a major contribution in preparing the emission estimate, the
evaluator must be a different person. The reason for this is to prevent
the recognized cognitive bias known as "anchoring" from influencing an
uncertainty assessment by the evaluator. If the evaluator were the same
person who made the emission estimate, his assessment of uncertainties of
the estimate would be subtly "anchored" to rationalize the estimate
regardless of the presence or absence of contrary jndications. Such
"anchoring" will subvert the purpose of obtaining an unprejudiced, though
subjective, uncertainty estimate.

In preparing a subjective uncertainty assessment tool, the emission
estimation procedure used for the emission estimate must be described in
plain English. Included in the description must be the assumptions and
premises employed, the nature of and problems associated with the data
used, and the emission estimation method. In addition to the emission
estimate used in the dinventory, this handbook recommends that every
analyst make two additional estimates: the upper plausible estimate and
the lower plausible estimate.

As will be seen from examples given in Section 3.0, these two addi-
tional estimates can be made without much extra effort. Every emission
estimate employs a definite, specifiable set of assumptions and premises,
a particular data set as opposed to an alternative data set, or perhaps
one estimation method as opposed to another. A1l an analyst needs to do
is to replace the one of those elements used in the original emission
estimate with an equally plausible alternative element, in order to obtain
a revised emission estimate for comparison with the original.

2-27



P

2.3.2 DELINEATION OF PRECISION AND BIAS UNCERTAINTIES

Let Eo’ Eu’ and E] be, respectively, the basic emission estimate,
upper plausible estimate and lower plausible estimate for a given source
or source category. From these three emission estimates, the analyst
calculates the mean, m, and standard deviation, s, of the three estimated
values:

m = (Eo + Eu + E])/3 (2-38)

52=

i

"M w

(g, - m)2/2 (2-39)

Using these results, he next calculates an upper threshold level, UL, and
a lower threshold level, LL, as:

UL =m+ s (2-40)
LL=m-s (2-41)

Then, Eo’ Eu’ E1, m, UL, and LL are plotted on normal probability paper as
shown in Figure 2-8.

With this probability graph and the summary description of his
emission estimation methods, including those for the upper and lower
threshold estimates, the analyst asks an evaluator to review his emission
estimation methods. Upon completion of the review, the evaluator is asked
to assess the probability or odds that the true emission value (which is
unknown) would, if known, be less than UL. Similarly, he is asked to
provide his estimated probability that the true value would be less than
LL.

In estimating the probability or odds for UL, the evaluator should
first consider whether the true value is more 1likely to be below UL or
above UL. If he thinks that the true value is likely to be below UL, he
should assign a probability of greater than 50 percent, say 70. If he
thinks the opposite is more 1ikely, he should assign a probability of less
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than 50 percent, say, 10. If he thinks that the true value is equally
1ikely to be either above or below UL, he should assign a probability of
50 percent or very near 50. If he strongly believes that the true value
must be below UL, then he should assign a very high probability, such as
99.99 percent. (This probability means that the odds that the true value
is below UL are 9,999 to 1.)

Suppose that the evaluator assigns probabilities of 70 percent for UL
and 10 percent for LL. (It should be noted that the probability for LL
must always be less than that for UL.) Based on these values for UL and
LL, a slanted line is drawn in Figure 2-8. By extending the line to the
97.5 and 2.5 percentiles, one can read from the graph both upper confi-
dence Tevel (UCL) and lower confidence level (LCL) for the evaluator's
uncertainty assessment. His assessment for the true mean, mos is read
from the graph at the intersection of the slanted line and the 50 percen-
tile.

The difference between the basic emission estimate, Eo’ and the
subjectively assessed true mean, mos is viewed as a bias assessed by the

evaluator:
B=E, -m (2-42)

The distance between UCL and LCL is four standard deviations. Thus, the
standard deviation assessed by the evaluator is given by:

S, T (bCL - LCL)/4 (2-43)

where the subscript n indicates that the underlying distribution is
assumed to be normal. Should the ratio of this standard deviation to the
assessed mean, (sn/mn), exceed 0.3, then the procedure should be repeated
using lognormal probability paper. (Lognormal probability paper differs
from normal probability paper in that the ordinate of the graph is
expressed in a logarithmic scale instead of a linear scale.)

The uncertainty assessment procedure described above can be carried
out quickly using the worksheet shown in Figure 2-9. Items in the upper
half of the worksheet are quantities estimated by the analyst while those
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in the Tower half are answers by the evaluator or quantities derived from
those answers. As stated earlier, the subscripts n and 1 stand for a
normal distribution and lognormal distribution. CV means a coefficient of
variation which is given by the following ratio:

CV = Sy / m, (2-44)

When a subjective uncertainty assessment is made twice (the first

using normal probability paper and the second using lognormal probability

paper), the resulting uncertainty parameters (mn, S Bn) and (m1, Sqs B])

should be shown to the evaluator and his preference solicited on. This

preference is indicated by marking either "normal" or *lognormal” distri-
bution, as listed in the last 1ine of the worksheet.
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UNCERTAINTY WORKSHEET

NAME DATE

Three estimates for emissions: TPD

Mean of three estimates: m = TPD
Standard deviation: s = TPD

TPD
TPD

Upper Level: m+s
Lower Level: m-s

Probability for UL %
Probability for LL %

Upper Confidence Level @ 97.5% TPD
Lower Confidence Level @ 2.5% TPD

Subjectively evaluated mean: m = TPD
Subjectively evaluated standard deviation: s = TPD
Subjectively evaluated bias: B = TPD
Coefficient of variation Cv =

If CV 0.3, proceed to log-probability paper.

Upper Confidence Level @ 97.5% TPD

Lower Confidence Level @ 2.5% TPD
Subjectively evaluated mean: my = TPD
Subjectively evaluated standard deviation: Sy = TPD
Subjectively evaluated bias: B] = TPD
Prefer: [ ] Normal [ ] Lognormal

Figure 2-9, Sample Worksheet for Subjectively Assessed Uncertainties
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3.0 EXAMPLES OF EMISSION UNCERTAINTY CALCULATIONS

To illustrate the uncertainty estimation methods described in Section
2.0, this section presents three real-world examples of emission estimates
and associated uncertainties. A1l three examples reflect actual emission
estimates included in the 1982 SoCAB emissions inventory. The first
example pertains to NOx emissions from power plant boilers, the_second to
total organic gas (T0G) exhaust emissions from light duty vehicles, and
the third to TOG emissions from dry cleaners.

These three examples represent typical and clearly defined emission
categories for, respectively, point sources, mobile sources, and area
sources. Each example first describes how the basic emission estimate and
two limiting plausible estimates are arrived at, next presents appropriate
Questions to solicit judgments of experts on probabilities associated with
upper and lower Tevels computed from the three emission estimates, and
finally illustrates how to assess, both subjectively and objectively, the
uncertainties associated with the basic emission estimate.

3.1 POWER PLANTS

Pollutant emissions from power plants have been studied more exhaus-
tively than from any other source categories. For years, many power
plants have been subject to periodic source tests and rigorous reporting
of daily operating conditions, such as fuel burning rate and electricity
generated. In recent years, emission estimation for some power plants has
been further advanced by the introduction of continuous emission monitor-
ing systems (CEM).

3.1.1 METHOD FOR ESTIMATING POWER PLANT EMISSION

There are two methods for estimating NOX emissions from power plant
boilers: the (old) calculation method and the CEM method. The calcu-
lation method has now been phased out in favor of the CEM method. How-
ever, in the 1982 emission inventory for the SoCAB, emissions from
Southern California Edison Company (SCE) power plants were estimated using
the calculation method whereas emissions from Department of Water and
Power (DWP) power plants were estimated by the CEM method. Figure 3-1

3-1



shows typical NOx curves, used in the calculation method to compute NOx
emissions as a function of megawatts of electricity generated. Figure 3-2

shows a comparison between monthly emissions estimated by the calculation

method and those by CEM. Although the two methods in general yield rather
similar emission values, they disagree considerably for some power plants,
and especially under start-up conditions.

Appendix B describes how an analyst (i.e., the author) re-computed
1982 basinwide power plant emissions using mean ratios of CEM-based
emission estimates to calculation-method-based emission estimates for the
SCE and DWP power plants. The basic emission estimate and the analyst's
upper and lower plausible estimates are:

Upper Plausible Estimate 39.8 tons per day (TPD)
Basic Estimate 39.4 TPD
Lower Plausible Estimate 38.7 TPD

3.1.2 SUBJECTIVELY ASSESSED UNCERTAINTY OF POWER PLANT EMISSION ESTIMATES

Based on the three estimates arrived at in Section 3.1.1, the analyst
computed the upper and lower threshold levels using Eqs (2-40) and (2-41)
as:

UL = 39.3 + 0.56
= 39.9 TPD

LL = 39.3 - 0.56
= 38.7 TPD

He then asked of a panel five power plant experts in the South Coast Air
Quality Management District the following two questions:

Q1. On a scale of 100, what are the odds that the true level of NO

emissions from all power plants in this air basin is less thaf
39.8 TPD?

Answer: chances in 100.

Q2. What are the odds that the true level of NO_ emissions from all
power plants in the air basin is Tess than 387 TPD?

Answer: chances in 100.

Answers from the five panelists are summarized in Table 3-1.
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A = -939.7 A=+-4.8

B =-1.2611 B = .8101

C = 963.22 C = .57

D = .001532 | D = .01756
DX

NOx = A+ BX + Ce

where NOX in 1b/hr and X in MW.

Figure 3-1 Power Plant Boiler NOx Curves for

Alamitos Units 3 and 4 with Gas Fuel
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TABLE 3-1. SUMMARY OF RESPONSES FROM FIVE EVALUATORS
ON THE 1982 BASINWIDE POWER PLANT NOX EMISSIONS

Evaluator 1 2 3 4 5 Median Mean
0dds for UL 80 50 70 60 90 70 70
Odds for LL 10 30 50 30 70 30 38

In a Delphi-type survey, the median is generally taken to indicate a
consensus opinion. However, in this example, the quantity sought is
probabiiity, a continuous and bounded variabie ranging from 0 to 1.

Therefore, a mean may be more appropriate than a median for indicating a
consensus opinion.

If the mean is taken for this purpose, the consensus opinion of the
five power plant emission experts is 70 percent for L1 and 38 percent for
L2. Based on this consensus response, both precision and bias uncertain-
ties of the basic emission estimate for basinwide powerplant NOx emissions
are estimated graphically in Figure 3-3. As seen from the graph, the bias
uncertainty is negligible (B = 0.1 TPD) while the precision uncertainty is
rather substantial (2s = 2.9 TPD). These results are summarized in a
sample work sheet (Figure 3-4) and appear to reflect the experts' confi-
dence that the basic emission estimate is a correct estimate although the
estimate is subject to substantial precision uncertainty.

3.1.3 OBJECTIVELY DETERMINED UNCERTAINTY FOR POWER PLANT EMISSIONS

According to the SCAQMD Laboratory, satisfactory performance of a CEM
system is specified as follows:

Quarterly Test

o Conduct 9 sets of flue gas tests.
0 Maximum relative error +20%

Daily Calibration

o Maximum allowable error with calibration gas +5%
o Maximum allowable error in flow rate +10%
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UNCERTAINTY WORKSHEET

NAME Panel Composite Response DATE January 1988

Three estimates for power plant emissions : 39.8, 39.4, 38.7 TPD

Mean of three estimates: m= 39.3 TPD

Standard deviation: = 0,56 TPD

Upper Level: m+s =39.9 TPD

Lower Level: m-s = 38,7 TPD
Probability for UL (70) %

Probability for LL (38) %

Upper Confidence Level @ 97.5% 42,00 TPD

Lower Confidence Level @ 2,5% 36.35 TPD
Subjectively evaluated mean: m, = 39.1 TPD
Subjectively evaluated standard deviation: Sy = 1.4 TPD
Subjectively evaluated bias: Bn = 0.1 TPD
Coefficient of variation CVv = 10.04

If CV 0.3, proceed to log-probability paper.

Upper Confidence Level @ 97.5% TPD

Lower Confidence Level @ 2.5% TPD
Subjectively evaluated mean: my = TPD
Subjectively evaluated standard deviation: Sy = TPD
Subjectively evaluated bias: B, = TPD

Prefer: [ ] Normal [ 1 Lognormal

Figure 3-4. Sample Worksheet for Uncertainties in
Power Plant Emissions.
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It is unclear whether this performance specification is any indica-
tion of errors in actual CEM measurements. However, for simplicity, we
assume that each CEM system exhibits, on average, 20-percent random error
in daily measured NO, emissions (i.e., CVy = 0.20) and that individual
daily NOX emissions are statistically independent of each other. Then,
the relative error in annual N0X emissions at a given power plant can be
computed from those of daily emissions as:

CVa

SQRT [SUM ( 0.5)T / SUM (u)  (3=1, 2, ..., n)
= SQRT [SUM (u,ev,)%] /u (3-1)
where
CV_ = coefficient of variation (or relative error) for an annual
emission,
CVi = coefficient of variation for the i-th daily emission,
u. = mean emissions for the i-th day,

u_ = mean annual emissijons, and

>
[

number of days in the year.

Again, for simplicity, assume that uy and DVi are the same for all
days, namely, U, = Uy, and Cv, = CVy (i=1,2, ..., n).

For n = 365, CV,i

CVd = 0.20 and u; = uy, Eq. (3-1) yields.

CVa

SQRT [ n (ug CVd)Z] / (nuy)
Vg / né

0.20 / (365)%

0.010

Therefore, the relative random error of the annual emission would be only
1 percent, or one twentieth of the daily relative random error.

In the old calculation method, the relative error in daily N0X
emission would be about 20 percent for baseload units and 30 to 50 percent
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for intermediate and peaking units. For illustration, assume 50 percent
relative error for the latter units.

- 2

CV, = CVy/n ,
= 0.50 / (365)
= 0.026

Even with this large relative error in daily emissions, that of the
annual emissions is only 2.6 percent.

Uncertainty in basinwide power plant emissions is given by a combina-
tion of uncertainties in individual power plant emissions as in the case
of annual emissions versus daily emissions. For illustration purposes
only, assume that in 1982 there were 4 CEM-equipped power plants
accounting for about 30 percent of the basinwide power plant emissions, 3
base load power plants accounting for about 50 percent of the total and 8
intermediate- and peaking-unit power plants accounting for the remaining
20 percent in the SoCAB. Furthermore, insofar as power plants are in the
same inventory category (i.e., CEM equipped, base load, or peaking unit),
all power plants regardless of size are assumed to emit the same amount of
NOX per Kwh. Then, assuming statistical independence in individual power
plant emissions, the relative error in the basinwide power plant emissions
is computed using Eq. (3-1) as:

cv = SQRT [SUM (u CV ) ] / SUM (u ) i=1,2, «.., 15
SQRT [SUM (mJ (u v .)2)] / SUM (msu ) j= 1 2, 3
SQRT [ 4 (0.30 x 0. 010/4) + 3(0.50 x 0. 010/3)
+8 (0.20 x 0.026/8)%]

"3 SQRT[2.25 + 8.33 + 3.38]
3.74 x 1075

basin

n

where mj and uj are, respectively, the number and mean emissions of power
plants in Group j. Thus, according to the statistical formula for a
precision uncertainty, the relative error in the basinwide power plant
emissions is estimated to be mere 0.4 percent.

The above example demonstrates that as long as there are many emis-
sion events, relative random error of aggregate emissions drops to a
negligibly small value regardless of the magnitude of relative error in
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individual emission events. This finding is consistent with the relation-
ship depicted in Figure 2-6.

It is interesting to note that the power plant emission experts
estimated the relative error to be 4 percent (see CV in Figure 3-4)
whereas the objective method yielded a relative error of 0.4 percent,
i.e., a tenth of the subjectively assessed uncertainty. This may be
reasonable, since the objective method provides precision uncertainty
only.

3.2 LIGHT DUTY VEHICLES

Emissions from 1light duty passenger vehicles account for about 60
percent of total mobile source TOG emissions and 45 percent of NOx emis-
sions. Since mobile sources account for about a half of the basin total
emissions for these two pollutants, light duty autos (LDA) should be the
most important source category for emission inventories in general and for
inventory uncertainty in particular. Unlike power plant emissions,
emissions from LDAs are not measured directly at the point of exhaust but
are estimated through a complex emission factor model and a transportation
model.

3.2.1 SUBJECTIVELY ASSESSED UNCERTAINTY OF LDA EMISSION ESTIMATE

To estimate total organic gas (TOG) emissions from Tight duty passen-
ger vehicles for the 1983 SoCAB inventory, the latest emission factor
model, EMFAC7B, was used for computing a composite emission factor while
the CALTRANS transportation model, DTIM, was employed for computing
vehicle miles traveled (VMT) and average vehicle speeds during morning
peak, afternoon peak, and off-peak hours. The resulting TOG emissions
were estimated to be 359 TPD (see Appendix C).

An analyst carefully reviewed the estimation methods and data used
for calculating the emissions from 1ight duty autos in the SoCAB. His
review identified two apparent errors in the emission calculation:

1. The transportation model appears to have underestimated the VMT

value by 3 percent; and

2. The emission factor model appears to have underestimated the
emission rate by 14 percent.
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Based on these findings, the analyst made the following three plausible
estimates (see Appendix C):

Upper Plausible Estimate 397 TPD

Basic Estimate 359 TPD

Lower Plausible Estimate 348 TPD
Using these three estimates, the analyst calculated the upper and Tower
threshold Tevels as UL = 394 and LL = 342 TPD. He then asked three mobile
source experts (two in the ARB E1 Monte office and one in SCAG, a planning
agency for the SoCAB area) the following questions:

Q1. On a scale of 100, what are the odds that the true level of TOG

exhaust emissions from all light duty autos in this air basin is
less than 394 TPD?

Answer: chances in 100.

Q2. What are the odds that the true level of TOG exhaust emissions
from all light duty autos in the air basin is less than 342 TPD?

Answer: chances in 100.

The three experts read the analysis summary given in Appendix C and
made their best guesses based on their knowledge of emission factors and
activity levels of 1light duty autos in the SoCAB. Their answers are
listed in Table 3-2.

TABLE 3-2. SUMMARY RESPONSES FROM THREE EVALUATORS ON THE 1983
BASINWIDE TOG EMISSIONS FROM LIGHT DUTY AUTOS.

Individual Response Consensus Response

Eva1uat0r/0dds* 1 2 3 Median Mean
Odds for UL 90 50 60 60 67
Odds for LL 10 10 30 10 17

*Out of 100 chances

The first evaluator's response yielded bias uncertainty of B = -9 TPD
and precision uncertainty of 2s = 40 TPD whereas the second evaluator's
response gave B = -35 TPD and 2s = 79 TPD. The reasons for the negative
biases (indicating an underestimation in the basic emission estimate) in
the two evaluations are as follows:
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1. The average speeds predicted by the transportation model appear
to be higher than actual average speeds, and the Tower the
speeds, the higher the TOG emissions; and

2. Ten to fifteen items that have been identified but not yet
incorporated into the modeling all tend to suggest an increase in
the TOG emissions.

On the other hand, the third evaluator's response yielded B = -18 TPD
and 2s = 135 TPD. The reason given for the large precision uncertainty
and rather small bias uncertainty assessed by this evaluator is as fol-
Tows:

3. Simulations of vehicular activities in the SoCAB involve many
assumptions and enormous calculations using a large vclume of
input data. This tends to yield estimates with Targe uncertain-
ties, but those estimates would be as robust as anyone can hope
for.

Documentation of these comments solicited from the evaluators appears
to be a useful adjunct of the uncertainty estimation activity under
consideration. There are two ways to integrate individual responses to a
consensus response: one is to focus on the median or mean of responses
(as illustrated in the power plant example); and the other is for the
analyst to integrate subjectively both responses and comments of the
evaluators. For example, the three comments mentioned above imply the
following:

o The first two evaluators think that the basic estimate is probably

too low, based on their knowledge of the emission factor model;
and

o The third evaluator (who is an expert on the transportation model)
thinks that uncertainty of any estimate based on the model must be
quite large, e.g., =135 TPD or %38 percent of the original esti-
mate in this case.

In their comments, the first two evaluators indicated their concern

about the accuracy of the emission factor model whereas the third evalua-
tor based his concern on the transportation model. Their responses should

be regard as complementary rather than contradictory. Thus, one way that




the analyst might choose to integrate the information, to avoid underes-
timating the uncertainty, could be:

B = Average of responses of the first two evaluators
= -22 TPD
2s = Response of the third evaluator

135 TPD

As shown in the sample worksheet of Figure 3-5, values of Ms Sps cv
and UCL and LCL were calculated from the basic emission estimate of 359
TPD, the bias of -22 TPD, and the precision uncertainty of 135 TPD. Then,
plotting those values on normal probability paper, probabilities for the
upper and lower threshold levels were graphically determined as seen from
Figure 3-6. These probabilities are 65 percent for UL and 13 percent for
LL. It is interesting to note that the two probability values arrived at
from the analyst's integrated response are in rather close agreement with
the consensus responses given in Table 3-2, particularly those by the mean
method (e.g., 65 vs. 67 for UL and 13 vs. 17 for LL).

The good agreement between the consensus probabilities for UL and LL
and those derived from the analyst's integrated response could be a mere
coincidence. Nevertheless, such a good agreement provides additional
credibility for the results obtained by either the integrated method or
the consensus method.

3.2.2 OBJECTIVELY CALCULATED UNCERTAINTY OF LDA EMISSION ESTIMATE

According to the ARB report (ARB 1986), the general exhaust emission
factor for a given vehicle fleet, calendar year (calyr), and pollutant
T0G, is given by:

EF

SUM (BER * OMTCF * SCF * MISCF * TF_ ) (3-2)

vmt
where
EF = emission factor in grams per mile
SUM = summation from model year (my)=calyr-24 to my=calyr+1
BER = basic exhaust emission rate in grams per mile
OMTCF = operating mode and temperature correction factor
SCF = speed correction factor



UNCERTAINTY WORKSHEET

NAME Analyst Integrated Response DATE January 5, 1988
Three estimates for LDA exhaust emissions: 397, 359, 348 TPD

Mean of three estimates: m = 368 TPD

Standard deviation: = 25.7 TPD

Upper Level: m+ s =394 TPD

Lower Level: m-s = 342 TPD
Probability for UL (65) %

Probability for LL (13) %

Upper Confidence Level @ 97.5% 44,85 TPD

Lower Confidence Level @ 2.5% 31.35 TPD
Subjectively evaluated mean: m, = 381‘ TPD
Subjectively evaluated standard deviation: Sy = 67.5 TPD
Subjectively evaluated bijas: Bn = =22 TPD
Coefficient of variation cv= 0.18

If CVv 0.3, proceed to log-probability paper.

Upper Confidence Level @ 97.5% TPD

Lower Confidence Level @ 2.5% TPD
Subjectively evaluated mean: my = TPD
Subjectively evaluated standard deviation: Sy = TPD
Subjectively evaluated bias: B] = TPD
Prefer: [ ] Normal [ ] Lognormal

Figure 3-5. Sample Worksheet for Uncertainties in Basinwide
TOG Emissions from LDA Exhaust Gases.
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MISCF

Tvat

miscellaneous correction factor

VMT travel weighting fraction

In EMFAC7C, BER 1is regressed to accumulated miles of each vehicle
through a so-called "deterioration factor". This regression equation,
however, explains only about 4 percent of the variance of BER. Therefore,
it is useless to try to reduce the overall variance of BER by applying the
regression equation to individual model years. Instead, this example
employs for uncertainty estimation the overall uncertainty of BER, which
js estimated to be around +20 percent of the mean BER.

The author contacted the EPA's Mobile Source Division in Ann Arbor,
Michigan to obtain basic data from which the various correction factors
are derived. Unfortunately, the EPA does not document the prediction
performance of each correction factor. Therefore, in this example, it is
arbitrarily assumed that the correction factors carry the following
degrees of uncertainty in the estimated factor value:

+

OMTCF + 20 percent

SCF + 30 percent
MISCF + 15 percent
TV

+

H+

vt 10 percent

For simplicity, we also assume that the most recent ten model years
constitute the great majority of motor vehicles in circulation and that
the fleet size is about the same for each model year. Under these simpli-
fying assumptions and the commonly employed assumption of mutual indepen-
dence among the variables, the coefficient of variance for the i-th model
year is given by:

CV(EF,) = SQRT (140.20%) (140.20%) (1+0.30%) (1+0. 15%) (140.10%) -1]
= 0.47

If emission factors of individual model years are considered to be
statistically independent, then the coefficient of variation for all model
years is:

CV(EF) = CV(EF,)/n? (3-3)
where n = 10 years. The result is

CV(EF) = 0.15
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Finally, the uncertainty of the basinwide VMT for 1ight duty autos is
assumed to be +10 percent at the 95 percent confidence level. Then, the
overall uncertainty of the basinwide emissions from LDVs is estimated to
be:

SQRTL (1+0.10%) (140.15%) -1]
0.18

CV(E)

This "objectively calculated" precision uncertainty of 18 percent is
about half of the subjectively assessed precision uncertainty of 38
percent or 135 TPD which was arrived at in Section 3.2.1.

3.3 DRY CLEANERS

Dry cleaners are usually treated collectively as an area source,
except for those emitting 25 tons per year or more of any pollutant.
Emissions from an area source are generally estimated by taking a product
of activity level, A, and emission factor, EF (found in AP-42 or some
analogous emission factor document prepared by ARB or a local air pollu-
tion control district):

E=AXEF (3-2)

An example illustrating this method of estimation is worked out for
TOG emissions from dry cleaners in Appendix D. However, the author found,
in personally interviewing dry cleaning emission experts at the SCAQMD,
that this district did not use the emission factor method given by Eq.
(3-2) for estimating emissions from dry cleaners. Instead, SCAQMD bases
their estimate on permit records. A1l dry cleaners under the jurisdiction
of SCAQMD must apply to and obtain from the district a permit for opera-
tion. Therefore, a new example applicable to dry cleaners in the SoCAB
was devised and is presented below to illustrate subjective assessment of
uncertainties of dry cleaning emissions. However, users of this handbook
are encouraged to review the example given in Appendix D as well as the
new example, which is disucssed in the next two subsections.




3.3.1 METHOD FOR ESTIMATING DRY CLEANING EMISSIONS

According to the 1983 SoCAB emission inventory, TOG emissions from
dry cleaning operations in the basin are estimated to be 18.9 TPD. This
estimate is said to be arrived at from the SCAQMD's permit and emission
fee records for dry cleaners. The permit system works as follows:

A. If uncontrolled TOG emissions (measured by solvent use) from the

dry cleaning operation are estimated to be less than 10 tons per
year (TPY), the dry cleaner should report his estimated emissions

to the SCAQMD and obtain a permit for operation from the dis-
trict; and

B. If uncontrolled TOG emissions are estimated to be greater than 10
tons per year, the dry cieaner should obtain a permit and pay an
emission fee for the excess emissions over 10 TPY.

Large cleaners of Type B are subjected to a close and frequent
scrutiny for their solvent use by SCAQMD enforcement personnel while small
cleaners of Type A are subject to once-a-year inspection of their facil-
jties. The district assumes the solvent usage amount indicated in the
permit to be the TOG emission rate for a small dry cleaner, whereas for a
large dry cleaner the district calculates the emission from the solvent
usage and the control efficiency reported in the emission fee application.

According to the SCAQMD's computerized data base (Nazemi 1987), the
numbers of dry cleaners and their emissions are as follows:

TABLE 3-3. DRY CLEANING OPERATIONS IN SOCAB
(As of November 1987)

Pre-Control Post-Control
Emission No. of Total Mean ., No. of Total Mean
Category Facilities Emission Emission Facilities Emission Emission
10 TPY 1,698 6,351 3.74 1,834 5,364 2.92
10 TPY 224 4,937 22.04 88 1,751 19.90
A11 Categories 1,922 11,288 5.87 1,922 7,115 3.70
(30.9) (19.5)

Note: The values in parenthesis are in tons per day (TPD).
Tons per year (TPY) in TOG emission.

%k

Tons per year per facility (TPY/Facility) in TOG emission.
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Based on the above data, the 1987 basinwide TOG emissions would be
reported as 19.5 TPD for all dry cleaners and 14.7 (=5364 / 365) TPD for
small dry cleaners. However, since the actual solvent usages of small
cleaners could differ from those reported in their permits, TOG emissions
from the small dry cleaners could be either Tower or higher than the
calculated value of 14.7 TPD. Therefore, an analyst (i.e., the author)
made the following two assumptions for computing upper and lower plausible
estimates:

For Upper Plausible Estimate: A1l small dry cleaners, on aver-

age, emit half of the threshold level, namely, 5.00 TPY per
facility instead of 2.92 TYP; and

For Lower Plausible Estimate: A1l small dry cleaners, on aver-
age, emit half of the emission values reported in their permits,
namely 1.46 (=2.92 x 0.5) TPY per facility instead of 2.92 TPY.

Under these two assumptions, the fractional change in the basinwide
dry cleaning emissions would be:

Upper Plausible Estimate:

Au = 1834 (5.00 ~ 2.92) / 77115
= 0.536

Lower Plausible Estimate

A1 1834 (1.46 - 2.92) / 7115
-0.376

Using the fractional changes computed above, the analyst then figured
out the upper and lower plausible estimates that corresponded to the 1983
inventory value of 18.9 TPD:

Basic Estimate = 18.9 TPD

Upper Plausible Estimate = 18.9 x (1 + 0.536)
= 29.0 TPD

Lower Plausible Estimate = 18.9 x (1 - 0.376)
= 11.8 TPD

3.3.2 UNCERTAINTY OF DRY CLEANING EMISSION ESTIMATE

Using the letter three estimates, the analyst (i.e., author) calcu-
lated the upper and lower threshold levels as UL = 28.5 TPD and LL = 11.3
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TPD. He then asked three dry cleaning emission experts (all three in the

_SCAQMD's Engineering Division) the following questions:
Q.1 On a scale of 100, what are the odds that the true level of
TOG emissions from dry cleaning operations in this air basin
is less than 28.5 TPD?

Answer: chances in 100.

Q2. What are the odds that the true level of TOG emissions from
dry cleaning operations in this air basin is less than 11.3
TPD?

Answer: chances in 100,

In responding to the above questions, all three experts grumbled that
since the district inspected every dry cleaning facility at least once a
year, the permit file and emission fee file would be quite complete. To
counter their confidence, the analyst pointed out that some dry cleaners
might have reported over- or under-estimated values of their solvent uses
in the permits, or their operation levels might have changed during the
year. After a few exchanges of views regarding the district permit and
fee system and resulting emission estimates between the three experts and
the analyst, two experts responded to the questions while the third expert
declined to state his perceived odds. Their answers are listed in Table
3-4,

TABLE 3-4. SUMMARY RESPONSES FROM THREE EVALUATORS
ON THE 1983 BASINWIDE TOG EMISSIONS FROM
DRY CLEANING OPERATIONS.

Evaluator/0dds” 1 2 3 Median  Mean
0dds for L 80 60 NA D 70
0dds for LL 40 30 NA D 35
Note: NA = No answer
UA = Undeterminable
* Qut of 100 chances.

Using the consensus response of UL = 70 and LL = 35, the upper and
lower confidence levels were first determined for a normal distribution in
Figure 3-7. The results are UCL = 55,1 TPD and LCL = -15.8 TPD. The
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subjectively evaluated mean and standard deviation were graphically
determined:

18.5 TPD
17.7 TPD

™

S
n

]

Since these values yielded CV = sn/mn = 0.96, exceeding the critical
level of 0.3, a new graphical determination was done using lognormal
probability paper, as shown in Figure 3-8. The subjectively evaluated
upper and lower confidence levels are read from the figure as:

UCL
LCL

116 TPD
2.3 TPD

The subjectively evaluated geometric mean is also read from the 50th
percentile point in the graph as:

my = 16.6 TPD

With lognormal probability paper, the subjectively evaluated standard
deviation is different from (UCL-LCL)/4. Instead, it is given by the
following equation:

s; = SQRT (UCL/m1) (3-4)

Substitution of the subjectively evaluated values of UCL and my into
equation (3-4) yields:

(116/16.6)
2.6 TPD

51

A1l subjectively evaluated values using both normal and lognormal
probability papers are summarized in the worksheet of Figure 3-9. Final-
ly, the results of normal and lognormal distributions were presented to
the two cooperative experts. After reviewing the two sets of results,
they indicated a preference for the results of lognormal distribution over
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UNCERTAINTY WORKSHEET

NAME Consensus Response DATE February 5, 1988

Three estimates for emissions: 29.0, 18.9, 11.8 TPD

Mean of three estimates: m= 19.9 TPD

Standard deviation: = 8.6 TPD

Upper Level: m+s = 28,5 TPD

Lower Level: m=-s-= 11.3 TPD
Probability for UL (70) %

Probability for LL (35) %

Upper Confidence Level @ 97.5% 55.1 TPD
Lower Confidence Level @ 2.5% -15.8 TPD
Subjectively evaluated mean: m. = 18.5 TPD
Subjectively evaluated standard deviation: Sy = 17.7 TPD
Subjectively evaluated bias: Bn = -0.4 TPD
Coefficient of variation Cv = 0.96

If CV 0.3, proceed to log-probability paper.

Upper Confidence Level @ 97.5% 116.0 TPD
Lower Confidence Level @ 2.5% 2.3 TPD
Subjectively evaluated mean: m, = 16.6 TPD
Subjectively evaluated standard deviation: Sy = 2.6 TPD
Subjectively evaluated bias: B1 = -2.3 TPD

Prefer: [ ] Normal [X] Lognormal

Figure 3-9. Sample Worksheet for Dry Cleaning Example
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those of normal distribution. Therefore, the subjectively evaluated mean,
bias, and confidence interval are:

m= 16.6 TPD
B=-2.3 TPD
UCL = 116.0 TPD
LCL = 2.3 TPD

As to objective estimation of uncertainties in the dry cleaning
emissions, the author could find no empirical data which would show how
reliable emission estimates based on the permit/emission fee system are.
Therefore, no attempt was made to estimate objectively calculated uncer-
tainties of the dry cleaning emissions.
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4.0 METHOD FOR ESTABLISHING INVENTORY UNCERTAINTY

In two preceding sections, methods of evaluating uncertainties of
individual emission estimates are discussed. Given these emission uncer-
tainties of individual source categories, this section provides procedures
for: (1) determining which categories are to be flagged for future
studies; (2) aggregating individual source category uncertainties to
obtain the uncertainties of broader source categories; and (3) compiling
and reporting those uncertainties for the entire emissions dinventory.
Figure 4-1 depicts diagrammatically a scheme for compiling and reporting
uncertainties for the entire emissions inventory (designated as Phase II)
as well as the steps used for generating initial source category uncer-
tainties (designated as Phase I).

4.1 OVERALL STRATEGY

In general, the development of an emissions inventory is a dynamic
process, reflecting technical improvements in inventory methods and
procedures and the changing patterns of emissions within a region (EPA
1981). Of particular importance is the on-going work to eliminate errors
through engineering analysis and to increase the confidence in the inven-
tory through full documentation, quality assurance, and ultimately its
demonstrated reliability for evaluating control strategies and air qual-
ity. The methodology described herein gives an additional dimension to
these efforts by providing the means to quantify the reliability of the
inventory in terms of precision and bias uncertainties of emission esti-
mates reported at various levels of the inventory. |

As indicated in Figure 4-1, the Togic flow for this effort requires a
two-tiered approach. The objective of the Phase I work effort is to
establish the initial uncertainty assessment for each inventory source
category (e.g., power plants, on-highway mobile sources, and so forth).
To accomplish this, the objective statistical techniques and subjective
evaluation methods developed in Sections 2.0 and 3.0 are to be applied to
the available information in each category.




Assign Analysts to Evaluate Emission
Estimates of Individual Source Categories

v

Obtain Upper and Lower Plausible
Estimates for Each Source Category

Phase 1

A\ 4

Generate Initial Uncertainty
Estimate for Each Source Category
Using Objective or Subjective Method

v

Score the Categories with Respect
to Precision and Bias Uncertainties

A 2

Flag Categories According to
gency-specmc Criteria

A v

I Flagged Categories I Unflagged Categories I Phase I1

L _ﬂl:t'le_l: 'l;\flaly_sf:: I No Further Analysis I

v

r----------

1 Refined Estimates 1— — — I

' of Emissions and l
Uncertainties

l----..-----.J

Compile Final Uncertainty
for All Source Categories

Y

I Aggregate Category Uncertainties I

into Broader Source Categories

A 4

| Determine Overall |

Inventory Uncertainty

Figure 4-1. Scheme for Quantifying Inventory Uncertainties
4-2




Under Phase II, the first thing to be performed is the ranking of the
categories by a special scoring system that assigns relative values to the
precision and bias uncertainties of each source category. The purpose is
to flag those categories that warrant consideration for further work. As
indicated in Figure 4-1, these flagged categories may or may not be
subjected to further analysis depending upon the timing and the priority
designated by the air pollution control agency. The main purpose of
flagging categories is the clear recognition that these categories require
special attention for enhancing the confidence in the existing emissions
inventory.

Independent of the flagging, uncertainties of ail source categories
will be aggregated to obtain the corresponding uncertainties of broader
source categories, using appropriate statistical formulas presented in
Sections 2.0 and 3.0 or the computer program listed in Appendix A. How to
compute the uncertainty of the aggregated category is discussed in Section
4.3 while in Section 4.2 the flagging method is described. The last
subsection, Section 4.4, describes the ways of compiling and reporting
uncertainties for the entire emissions inventory.

4.2 FLAGGING PROBLEM CATEGORIES

Once the uncertainties in the emissions estimates for all source
categories have been determined, a coordinator of a committee of experts
assigned to oversee the uncertainty of assessment effort should tabulate
precision and bias uncertainties together with estimated emissjons for
each of the categories in the inventory. Based on the tabulated results,
the coordinator can score the uncertainty of each source category i in any
of several different ways:

1. Score category uncertainty according to the precision uncertainty

measured by coefficient of variation, CVi;

2. Score category uncertainty according to the precision uncer-
tainty, CV., and the bias uncertainty measured by absolute value

of relativéd bias, b, where b, = B,/E;

3. Score category uncertainty according to the sum of precision and
bias uncertainties (CVi + b, ); and

4. Score category uncertainty according to the sum of standard
deviation and bias, (s, + B, );




Each scoring scheme listed above has varying degrees of utility
depending on the intended use of the scores. If, say, the purpose were to
find problem categories in some sense, then the multiple scoring scheme
would be most suitable.

Suppose that the coordinator has picked Scheme 4 for finding problem
categories for further investigation. Then, he will set threshold values
for standard deviation and bias, say s* and B*, such that K out of N
(K N) source categories in the inventory will be flagged for a closer
Took. In this flagging scheme, a category may be flagged because of S5
s*, because of Bi B*, or both. The choice of K should be made by the
coordinator according to his evaluation of the initiai uncertainty estima-
tion result and the scope of the agency's uncertainty assessment efforts.
It should be noted that he can make a similar flagging effort at any
aggregation level of the inventory system,

For each flagged category, the coordinator should examine whether or
not the category is really worth further investigation. Some flagged
categories may have been previously studied so intensively that there
seems to be little room for further improvement in tightening the uncer-
tainty. For such a category, further investigation may not be rewarding.
After reviewing all the flagged categories, the coordinator should select
a set of the flagged categories for future studies.

4.3 AGGREGATING INITIAL UNCERTAINTIES INTO BROADER SOURCE CATEGORIES

Compilation of initially assessed uncertainties and their aggregation
into broader source categories can be made in several different ways,
depending on the ultimate use of the uncertainty estimates. Suppose that
the purpose of uncertainty estimation is limited to indicating the uncer-
tainty of each of the 5 to 10 major source categories (e.g., on-highway
mobile sources and fugitive-dust area sources). The uncertainty estimates
of all sub-categories may then be grouped into those of the major cate-
gories by following the inventory category hierarchy. For each major
group, uncertainties of all the subcategories are aggregated into the
total by using an appropriate statistical formula given in Sections 2.0
and 3.0.
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In this aggregation process, the analyst must give careful consid-
eration to the following issues:

1.

Precision uncertainties and bias uncertainties must be aggregated
separately;

Before aggregating subcategory precision uncertainties, a deci-
sion must be made as to whether the assumption of no correlation
(i.e., independence) or full correlation (i.e., dependence) best
describes the statistical associations among subcategory
emissions;

Precision uncertainties must be aggregated by using an appropri-
ate formula for either the independence or dependence assumption
employed above; and

A partial correlation between emissions in different subcat-
egories should only be considered when there is strong evidence
that it more truly reflects the statistical association between
the emission variations than either of the two simple assump-
tions, i.e., independence or dependence.

Example: NOx Emissions from Fuel Combustion

According to the 1983 SoCAB emission inventory, NOX emissions from
all fuel combustion sources are estimated as summarized in Table 4-1.

TABLE 4-1. 1983 NOx EMISSIONS FROM FUEL COMBUSTION
SOURCES IN SoCAB

Estimated Uncertainties

Source Category NOx Emissions (TPD) Precision,s Bias, B
Agricultural 0.0 0.5 -0.2
0i1 and Gas Production 25.4 3.7 2.2
Petroleum Refining 51.0 4.3 -1.8
Other Manufacturing/Industrial 75.9 13.2 -5.6
Electric Utilities 39.4 1.4 0.1
Other Services and Commerce 33.2 5.3 3.2
Residential 33.5 7.1 -4.5
Other 3.9 0.8 0.5

Total Fuel Combustion 262.3 (17.0) -6.1
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In this table, uncertainty values are all assumed for illustration
purposes only, except for electric utilities whose uncertainty values were
arrived at by five power plant emission experts at the SCAQMD, applying
the subjective assessment method. For simplicity, further assume that
emissions from all source categories are normally distributed and mutually
independent. Under these assumptions, Eq. (2-23) reduces to:

VAR (X) = SUM ( 12 ) (4-1)

or as an approximate equation

s = SQRT [SUM (s% )] (4-2)
Substituting S; values given in Table 4-1 into Eq. (4-2), one finds

s = 17.0 TPD

(The same result will be obtained using Eq (3-1) instead of EQ. (4-2).)

It should be noted that, in this example, the source category "Other
Manufacturing/Industrial® accounts for a particularly large percentage of
the overall precision uncertainty.

Percentage accounted for

2
by this Category (13.2/]7.0) x 100

60.3 percent

For bias uncertainties, the simplest measure for the aggregated
category may be given by the sum of individual category biases as indi-
cated in Table 4-1. Another useful parameter for indicating the bias
uncertainty of an aggregated category is given by the following equation:

b = SuM( B; )/SUM(ui) (4-3)

where Bi is the absolute value of the i-th category bias Bi and uy is
the estimated emission of that category.
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Substituting the bias values given in Table 4-1 into the above
equation, we find

b = 0.069 or 6.9 percent

It should be noted that in this example, this relative bias uncertainty,
b , is as big as the relative precision uncertainty, CV, which is computed
as:

cv

i

s/SUM(u)
17.0/262.3
0.065 or 6.5 percent

4,4 COMPILING AND DOCUMENTING INVENTORY UNCERTAINTIES

Potential uses of the assessed uncertainties of inventoried emission
estimates range from a quantitative indication of the reliability of the
inventory system to a diagnostic tool for identifying problem source
categories and to a systematic means of upgrading the existing inventory.
In view of potential uses of the uncertainty analysis, it is especially
important to employ the best presentation scheme for assessed uncertain-
ties of the inventoried emissions.

Table 4-2 presents a sample format that should be useful for sum-
marizing results of an uncertainty study. In this example, eight major
categories and three totals (stationary, mobile, and inventory) are used
to characterize uncertainties of the emissions inventory. Each major
source category is described by the total emissions estimate, the percent-
age contribution of that category to inventory total, the precision
uncertainty, and the bias uncertainty.
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The precision uncertainty is described by the coefficient of varia-
tion (or relative precision uncertainty), CV, the standard deviation, s,
and the percentage contribution of the category's precision uncertainty to
the overall inventory uncertainty. The bias uncertainty is described by
the relative bias uncertainty, b, the total bias, B, and the percentage
contribution of the category's bias uncertainty to the overall inventory
uncertainty. In the "“remarks" column, any noteworthy remarks such as
whether the category is flagged or not will be recorded.

Quantities listed in Table 4-2 permit uncertainty of each category or
an entire inventory to be concisely characterized. For example, uncer-
tainty of the overall inventory emission (m) may be expressed as:

95% Confidence Interval = = 2CV x 100 percent of m
Total Bias =B
Mean Relative Bias

b x 100 percent of m
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APPENDIX A

NUMERICAL SIMULATION MODEL FOR STATISTICAL
DISTRIBUTION OF AN AGGREGATED VARIABLE



WM

REAL SERIES(1000,10),FINAL(1000),STATS(6,10),PTILES(19,10)

REAL MEAN,STDEV,MEANS (6)

CHARACTER ST1*10,MODES (2)*20,DISTS (2)*20,PSTVS (2) *20
DATA MODES/ 'ADDITIVE' , 'MULTIPLICATIVE' /

DATA DISTS/ 'NORMAL' , 'LOGNORMAL' /

DATA PSTVS/ 'REGULAR' , 'POSITIVE ONLY' /

FORMAT(I4,' - ',A)
FORMAT (' ',A,\)
FORMAT (F6.0)
FORMAT (I6)

WRITE(*,1) 'ENTER MEAN: '
READ (*,2) MEAN

WRITE(*,1) 'ENTER S.D.: '
READ (*,2) STDEV

WRITE(*,'(/)")

WRITE(*,11) (I,DISTS(I+1),I=0,1)
WRITE(*,1) 'ENTER DIST: °

READ (*,3) IDIST

WRITE(*,'(/)"')

WRITE(*,11) (I,PSTVS(I+1),I=0,1)
WRITE(*,1) 'ENTER PSTV: °

READ (*,3) IPSTV

WRITE(*,"'(/)"')

WRITE(*,11) (I,MODES(I+1),I=0,1)
WRITE(*,1) 'ENTER COMB: !

READ (*,3) ICOMB

WRITE(*,1) 'ENTER NVAR: '
READ (*,3) NVAR

OPEN(1,FILE='TESTRN.OUT')
DO 30 ITIME = 1,10

CALL GETTIM(IHR,IMN,ISC,I100)
WRITE(*,4) IHR,IMN,ISC,'GENERATING NUMBERS -', ITIME
FORMAT (2X,I2,':',I2,':',I2,' - ',A,I3)

DO 10 I = 1,NVAR
CALL RANDOM(MEAN,STDEV,IPSTV,IDIST,1000,SERIES(1,I))

CALL GETTIM(IHR,IMN,ISC,I100)
WRITE(*,4) IHR,IMN,ISC,'COMBINING NUMBERS'

DO 20 I = 1,1000

IF ( ICOMB .EQ. O ) THEN
FINAL(I) = 0.0
ELSE
FINAL(I)
END IF

1.0

DO 20 J = 1,NVAR
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20

30

+

IF ( ICOMB .EQ. O ) THEN
FINAL(I) = FINAL(I) + SERIES(I,J)
ELSE
FINAL(I) = FINAL(I) * SERIES(I,J)
END IF
CONTINUE

CALL GETTIM(IHR,IMN,ISC,I100)
WRITE(*,4) IHR,IMN,ISC,'CALCULATING PERCENTILES -',ITIME

CALL PCTILE(IDIST,2,1000,FINAL,
PTILES (1,ITIME),STATS (1, ITIME))

CALL GETTIM(IHR,IMN,ISC,I100)
WRITE(*,4) IHR,IMN,ISC,'PERCENTILES COMPLETE -!',ITIME

CONTINUE

WRITE(1, ! (1H
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) ')
WRITE(1,5) MEAN,STDEV,IDIST,DISTS(IDIST+1),

+ IPSTV,PSTVS (IPSTV+1) , ICOMB, MODES (ICOMB+1) , NVAR
5 FORMAT(/' ENTERED MEAN =',F10.3,
+ /' ENTERED S.D. =',F10.3,
+ " /' ENTERED DIST =',I10 ,' ',A,
+ /' ENTERED PSTV =',I10 ,' ',A,
+ /' ENTERED COMB =',I10 ,' ',A,
+ /' ENTERED NVAR =',I10 )
DO 60 I = 1,6
MEANS(I) = 0.0
DO 50 J = 1,10
50 MEANS(I) = MEANS(I) + STATS(I,J)
60 MEANS(I) = MEANS(I)/10.0
WRITE(1,'(/)")
WRITE(1,61) (STATS(1,I),I=1,10),MEANS (1)
WRITE(1,62) (STATS(2,I),I=1,10),MEANS(2)
WRITE(1,63) (STATS(3,I),I=1,10),MEANS(3)
WRITE(1,64) (STATS(4,I),I=1,10),MEANS(4)
WRITE(1,65) (STATS(5,I),I=1,10),MEANS(5)
WRITE(1,66) (STATS(6,I),I=1,10),MEANS(6)
61 FORMAT( ' A MEAN =',611F9.3)
62 FORMAT( ' A S.D. =',11F9.3)
63 FORMAT( ' G MEAN =',11F9.3)
64 FORMAT( ' G S.D. =',11F9.3)
65 FORMAT( ' MIN =',11F9.3)
66 FORMAT( ' MAX =',11F9.3)
WRITE(1,'(/)"')
WRITE(1,7)
7  FORMAT(/' PERCENTILES')
DO 70 I = 1,19
MEANS (1) = 0.0
DO 71 J = 1,10
71 - MEANS(1) = MEANS(1) + PTILES(I,J)
MEANS (1) = MEANS(1)/10.0
70  WRITE(1,75) I, (PTILES(I,J),J=1,10),MEANS(1)
75  FORMAT(I5,4X,11F9.3)

END
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SUBROUTINE RANDOM (MEAN,STDEV, IFLAG,DFLAG,N, SERIES)

DRAW A SERIES OF RANDOM NUMBERS, RN, FROM N(0,1) AND TRANSFORM

THEM TO RANDOM NUMBERS, R, FOR A SPECIFIED DISTRIBUTION

AUTHOR: MICHAEL A. THIELE
10016 ORION AVENUE
MISSION HILLS, CA 91345
(818) 892-2201

DATE: FEBRUARY, 1987
PARAMETERS: => = PASSED; <- = RETURNED; I = INTEGER: R = REAL
MEAN -> R MEAN OF DESIRED NORMAL DISTRIBUTION
STDEV ~-> R STANDARD DEVIATION OF DESIRED DISTRIBUTION
IFIAG -> I REGULAR OR POSITIVE ONLY FLAG

= 0 - REGULAR DISTRIBUTION

= 1 - POSITIVE ONLY DISTRIBUTION (DEFAULT)
DFLAG -> I DISTRIBUTION FLAG

= 0 - NORMAL DISTRIBUTION

= 1 - LOGNORMAL DISTRIBUTION
N -> I THE NUMBER OF RANDOM NUMBERS DESIRED
SERIES <~ R VECTOR FOR THE SERIES OF RANDOM NUMBERS
CALLS:
RANDU = UNIFORN RANDOM NUMBER GENERATOR FUNCTION, U(0-1)
ZFUNC = INVERSE Z FUNCTION, N(O,1)

INTEGER IFLAG, DFLAG, N
REAL MEAN, STDEV, SERIES(1)

REAL*8 X

REAL*8 RANDU, ZFUNC

IF ( N .LE. 0 ) RETURN

DO 10 I = 1,N

GENERATE THE NORMAL RANDOM NUMBER, N(0,1)

X
X

RANDU( 0 )
ZFUNC( X )

TRANSFORM IT TO DESIRED DISTRIBUTION

X = MEAN + STDEV * X

CHECK FOR POSITIVE ONLY FLAG AND IF IT FAILS GO BACK

IF ( (IFLAG .EQ. 1) .AND. (X .LT. 0.0) ) GOTO 1

SERIES (I) =
IF ( DFLAG .EQ. 1 ) SERIES(I) = EXP( SERIES(I) )

CONTINUE

RETURN



END
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REAL*8 FUNCTION RANDU( I )
REAL*8 UNIFORM PSEUDO-RANDOM NUMBER GENERATOR U (0-1)
AUTHOR: MICHAEL A. THIELE
10016 ORION AVENUE
MISSION HILLS, CA 91345
(818) 892-2201
DATE: FEBRUARY, 1987
PARAMETERS: =-> = PASSED; <- = RETURNED; I = INTEGER; R = REAL
I -> I DUMMY ARGUMENT, NOT USED
RANDU <- R*8 DOUBLE PRECISCION RANDOM NUMBER IN
THE RANGE 0.0 <= RANDU < 1.0
THE FORMULA USED IS THE LINEAR CONGRUENTIAL METHOD:

X(N+1) = ( A*X(N) + C ) MODULO M

WHERE:
A = 2%%26 + 5
C = 2%%26 + 5
M = 2%%3]1 -~ 1
X(N) = PREVIOUS MEMBER OF SEQUENCE
X(N+1) = NEXT MEMBER OF SEQUENCE

THE SEED, X(0), COMES FROM THE SYSTEM TIME AND IS
THE SECONDS SINCE MIDNIGHT

REFERENCE:

"THE ART OF COMPUTER PROGRAMMING, VOLUME 2: SEMINUMERICAL
ALGORITHMS", BY DONALD E. KNUTH, 2ND EDITION, 1981,
ADDISON-WESLEY, PP 9-22

CALLS:

MSTIME - DOS SPECIFIC ROUTINE THAT RETURNS THE SYSTEM TIME
REAL*8 M,A,C,X

INTEGER IFIRST

CHARACTER*10 ATIME

DATA IFIRST/ 0 /

IF( IFIRST .EQ. O ) THEN

THE MAGIC NUMBERS

A = 2,0%*26.0 + 5.0
C = 2.0%%26.0 + 5.0
M=2.0%%¥31.0 - 1.0

THE SEED VALUE - TIME IN SECONDS SINCE MIDNIGHT

CALL GETTIM(IHR,IMN,ISC,I100)
X = FLOAT(IHR)*360000. + FLOAT(IMN)*6000. +
FLOAT (ISC) *100. + FLOAT(I100)
. ' A-6



IFIRST = 1

END IF
X = A%X + C
X = DMOD( X , M )

RANDU = X / M
RETURN
END
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REAL*8 FUNCTION ZFUNC( P )

INVERSE Z FUNCTION - CALCULATE THE Z VALUE FOR THE
PASSED PERCENTILE VALUE, ABS( ERROR ) < 0.00045

AUTHOR: MICHAEL A. THIELE
10016 ORION AVENUE
MISSION HILLS, CA 91345
(818) 892~2201

DATE: FEBRUARY, 1987

REFERENCE:

"HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS,
GRAPHS, AND METHEMATICAL TABLES", M. ABRAMOWITZ AND
I.A. STEGUM, EDITORS, 1972, NATIONAL BUREAU OF
STANDARDS, WASHINGTON, D.C., PP 933

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 P,T,T2,ZERO,ONE,HALF, INFNTY
REAL*8 C,D,C0,C1,C2,D0,D1,D2,D3

DATA ZERO / 0.0 /
DATA ONE / 1.0 /
DATA HALF / 0.5 /
DATA INFNTY / 1.0E38 /

INVERSE Z FORMULA CONSTANTS

DATA co0,C1,C2 / 2.515517 , 0.802853 , 0.010328 /
DATA DO,D1,D2,D3 / 1.000000 , 1.432788 , 0.189269 , 0.001303 /

IF ( P .GE. ONE ) THEN
ZFUNC = INFNTY
RETURN
ENDIF

IF ( P .LE. ZERO ) THEN
ZFUNC = -INFNTY

RETURN
ENDIF
D=pPp
IF ( D .GT. HALF ) D = ONE - D
T2 = D*D
T2 = ONE / T2
T2 = DLOG( T2 )
T = DSQRT( T2 )
C = CO + C1*T + C2*T2
D = DO + D1*T + D24T2 + D3*T*T2
ZFUNC =T - €/ D

IF ( P .LE. HALF ) ZFUNC = -ZFUNC

RETURN
END
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SUBROUTINE PCTILE (DFLAG, PFLAG,N, SERIES, PTILES, STATS)

RANK-ORDER THE SERIES OF RANDOM NUMBERS IN ASCENDING
ORDER AND COMPUTE SPECIFIED PERCENTILE VALUES AND
DISTRIBUTION PARAMETERS

AUTHOR: MICHAEL A. THIELE
10016 ORION AVENUE
MISSION HILLS, CA 91345
(818) 892-2201

DATE:  FEBRUARY, 1987

PARAMETERS: ->

PASSED; <~ = RETURNED; I = INTEGER; R = REAL

DFLAG -> I DISTRIBUTION TYPE FLAG
= 1 - NORMAL DISTRIBUTION
= 2 - LOGNORMAL DISTRIBUTION
= 3 =~ MIXED DISTRIBUTION
PFIAG -> I FLAG FOR DESIRED PERCENTILES
=0 - (5) 2.5 16 , 50 , 84, 97.5
=1 =- (11) 1, 2.5, 5, 16, 30 , 50,
70, 84, 95, 97.5, 99
=2 - (19) 0.05, 0.1, 0.2, 0.5, 1, 2.5, 5,

16, 30, 50, 70, 84, 95, 97.5,
99, 99.5, 99.8, 99.9, 99.95
NOTE: PFLAG = 2 SHOULD BE USED TO CALCULATE VALUES
TO BE USED BY THE CFDIST ROUTINE
N -> I NUMBER OF RANDOM NUMBERS IN THE SERIES
SERIES -> R THE SERIES OF RANDOM NUMBERS
PTILES <- R THE VECTOR OF CALCULATED PERCENTILES VALUES
NOTE: THE VECTOR MUST BE DIMENSIONED LARGE ENOUGH IN
THE CALLING PROGRAM TO ACCOMODATE THE NUMBER OF
PERCENTILES SPECIFIED BY PFLAG ( 5, 11, OR 19)
STATS <~ R VECTOR OF SIZE 6 OF CALCULATED STATISTICS
LOC 1 - ARITHMETIC MEAN

2 - ARITHMETIC STANDARD DEVIATION
3 - GEOMETRIC MEAN
4 - GEOMETRIC STANDARD DEVIATION
5 - MINIMUM VALUE
6 - MAXIMUM VALUE

CALLS:

HPSORT - HEAP SORT ROUTINE

INTEGER DFLAG, PFLAG, N

REAL SERIES (1), PTILES(1), STATS(1)

INTEGER NPS(3)

REAL PCTLS (19, 3)

DATA NPS / 5, 11, 19 /

DATA PCTLS/
0.0250 , 0.1600 , 0.5000 , 0.8400 , 0.9750 , 0.0000
0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000

7
0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000 ,
0.0000 ,
0.0100 , 0.0250 , 0.0500 , 0.1600 , 0.3000 , 0.5000 ,
0.7000 , 0.8400 , 0.9500 , 0.9750 , 0.9900 , 0.0000 ,
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0.9500 0.9750 , 0.9900 , 0.9950 , 0.9980

0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000

0.0000 ,

0.0005 , 0.0010 , 0.0020 , 0.0050 , 0.0100

0.0500 , 0.1600 , 0.3000 , 0.5000 , 0.7000
’

0.9995 /

IF ( N .LE. 0 ) RETURN

SORT THE SERIES OF VALUES

CALL HPSORT( SERIES , N )

DETERMINE THE PERCENTILES TO CALCULATE

IPTR = PFLAG + 1

IF ( (IPTR .LT. 1) .OR. (IPTR .GT. 3) ) IPTR = 3

NT = NPS(IPTR)
CALCULATE THE PERCENTILES

DO 10 I = 1,NT

Rl = FLOAT(N)*PCTLS(I,IPTR) + 0.5
IRl = R1
IR2 = IR1+1

IF ( IRl .LT. 1 ) THEN
PTILES(I) = SERIES(1)

ELSE IF ( IR2 .GT. N ) THEN

PTILES(I) = SERIES(N)

ELSE
X1 = SERIES (IR1)
X2 = SERIES(IR2)
IF ( IFLAG .EQ. 1 ) THEN
X1 = LOG( X1 )
X2 = LOG( X2 )
END IF
XT = X1 + (X2 - X1) * (Rl - FLOAT(IR1))
IF ( IFLAG .EQ. 1 ) XT = EXP( XT )
PTILES (I) = XT
END IF
CONTINUE

CALCULATE THE STATISTICS

SUM = 0.0
SSQ = 0.0
STATS (5) = SERIES (1)
STATS(6) = SERIES(1)

DO 20 I = 1,N

SUM = SUM + SERIES(I)

SSQ = SSQ + SERIES(I)*SERIES(I)

IF ( SERIES(I) .LT. STATS(5) ) STATS(5)
IF ( SERIES(I) .GT. STATS(6) ) STATS(6)

STATS (1) = SUM/FLOAT (N)

0.0000

0.0250
0.8400
0.9990

SERIES (1)
SERIES (I)

STATS(2) = SQRT( (SSQ - SUM*SUM/FLOAT(N)) ,/ FLOAT(N-1) )

X1 = STATS(1) * STATS(1)
X2 = STATS(2) * STATS(2)
XT = SQRT( LOG( X2/X1 + 1.0 ) )
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STATS (4)
STATS (3)

EXP( XT )
STATS (1) / EXP( XT*XT * 0.5 )

RETURN
END
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HEAPSORT ROUTINE

THE HEAPSORT ROUTINE IS A QUICK METHOD OF SORTING A SERIES

OF VALUES BY TRANSFORMING THE SERIES INTO A HEAP AND USING

A TOP-DOWN SELECTION METHOD FOR THE FINAL SORT. THE METHOD

IS DESCRIBED IN DETAIL IN THE TWO REFERENCES. THESE ROUTINES
FOLLOW THE PROCEDURES PRESENTED IN THE SECOND REFERENCE. THIS
REQUIRES THE USE OF A SECOND PROCEDURE TO ADJUST THE VALUES
TO SATISFY THE HEAP PROPERTY.

PERFORMANCE IS OF THE ORDER ( N LOG N )
AUTHOR: MICHAEL A. THIELE
10016 ORION AVENUE
MISSION HILLS, CA 91345
(818) 892-2201
DATE: FEBRUARY, 1987
REFERENCES:

"THE ART OF COMPUTER PROGRAMMING, VOLUME 3: SORTING AND
SEARCHING", DONALD E. KNUTH, 1973 ADDISON-WESLEY, PP 145-149

"FUNDAMENTALS OF DATA STRUCTURES", ELLIS HOROWITZ AND
SARTAJ SAHNI, 1976, COMPUTER SCIENCE PRESS, PP 357-361

HPSORT - HEAPSORT A VECTOR OF SINGLE PRECISCION VALUES
SUBROUTINE HPSORT (R, N)

ARGUMENTS :
R <=> VECTOR OF VALUES TO BE SORTED
N => SIZE OF ARRAY
IF N < 0 THEN SORT INTO DESCENDING ORDER

REAL*4 R(1),RT
INTEGER N,J,L,GOBACK

IF ( ABS(N) .LE. 1 ) RETURN
NT = ABS(N)

CREATE THE HEAP

ASSIGN 1 TO GOBACK
L = NT/2

DO 1I=1L,1,-1
IADT = I

NADJ = NT

GOTO 10
1 CONTINUE

DO THE TOP-DOWN SELECTION AND READJUST THE HEAP

ASSIGN 2 TO GOBACK
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DO
RT

R(I
R(1

IADT
NADJ

GOT

2 I = NT-1,1,-1
= R(I+1)

+1) = R(1)

) = RT

1
I

O 10

CONTINUE

IF

( N .GT. 0 ) RETURN

REVERSE THE ORDER

DO 3 I=1,L

I2 =NT - I + 1
RT = R(I)

R(I) = R(I2)
R(I2) = RT
RETURN

ADJUST THE HEAP

Jd =
RT

IF ( J .GT. NADJ ) GOTO 12

IF ( J .LT. NADJ .AND. R(J)

J2
IF

R(J
J =
GOT

J2
R(J
GOT

END

2*%IADJ
= R(IADJ)

= J/2
( RT .GE. R(J) ) THEN
R(J2) = RT
GOTO GOBACK
ENDIF
2) = R(J)
2%J
0 11

= J/2
2) = RT
O GOBACK

.LT. R(J+1) ) J

J

-+
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SUBROUTINE CFDIST(DFLAG,IFLAG,PTILES,X)

A VALUE IS CALCULATED FOR A RANDOMLY'SELECTED PERCENTILE FROM

A DISTRIBUTION DEFINED BY THE PASSED PERCENTILE VALUES

AUTHOR: MICHAEL A. THIELE
10016 ORION AVENUE
MISSION HILLS, CA 91345
(818) 892-2201

DATE: FEBRUARY, 1987
PARAMETERS: -> = PASSED; <- = RETURNED; I = INTEGER; R = REAL
IFIAG ~-> I INTERPOIATION FLAG

= 0 = LINEAR INTERPOLATION

=1 = LOG~LINEAR INTERPOLATION

PTILES -> R VECTOR OF 19 PERCENTILE VALUES FROM PCTILE
ROUTINE USING PFLAG = 2 ( 0.05, 0.1, 0.2,
0.5, 1, 2.5, 5, 16, 30, 50, 70, 84, 95,
97.5, 99, 99.5, 99.8, 99.9, AND 99.95)

X <- R THE CALCULATED VALUE

CALLS:

RANDU - UNIFORM RANDOM NUMBER GENERATOR U(0-1) FOR
THE RANDOM PERCENTILE

INTEGER IFLAG, N, RANK
REAL PTILES (1), X

REAL*8 RANDU
REAL  PCTLS (19)

DATA PCTLS /
0.0005
0.0500
0.9500
0.9995

0.0010 , 0.0020 , 0.0050 , 0.0100 , 0.0250
0.1600 , 0.3000 , 0.5000 , 0.7000 , 0.8400
0.9750 , 0.9900 , 0.9950 , 0.9980 , 0.9990

NN NN

GENERATE THE RANDOM PERCENTILE
P = RANDU (0)

CHECK IF ITS ABOVE OR BELOW THE RANGE OF PERCENTILES
IF S0, ASSIGN THE MINIMUM OR MAXIMUM VALUE AND RETURN

IF ( P .LE. PCTLS(1l) ) THEN
X = PTILES (1)
RETURN
ELSE IF ( P .GE. PCTLS(19) ) THEN
X = PTILES(19)
RETURN
END IF

FIND THE LOCATION IN THE PERCENTILES

DO 10 I = 1,18

’




10 IF ( (P .GE. PCTLS(I)) .AND. (P .LT. PCTLS(I+1)) ) IPTR = I

CHECK IF WE HIT A PERCENTILE ~ IF WE DID, ASSIGN THE VALUE

oo anaQon

naon

AND RETURN

IF ( P .EQ. PCTLS(IPTR) ) THEN
X = PTILES (IPTR)
RETURN

END IF

INTERPOLATE FROM THE 2 NEAREST VALUES

X1 = PTILES (IPTR )
X2 = PTILES(IPTR+1)
Pl = PCTLS (IPTR )
P2 = PCTLS (IPTR+1)

CHECK FOR LOG-LINEAR INTERPOLATION
IF ( IFLAG .EQ. 2 ) THEN

X1 = LOG( X1 )

X2 = LOG( X2 )
END IF
X = X1 + (X2-X1) * (P-P1)/(P2-P1)
IF ( IFLAG .EQ. 2 ) X = EXP( X )

RETURN
END
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POWER PLANT EMISSIONS

Emissions from power plants are probably the most studied source
category in the emission inventory system in most air quality management
districts. Emissions of oxides of nitrogen (NOX) from a power generating
unit used to be calculated from generating load and the so-called "load
curve. This Toad curve was constructed for each generating unit and fuel
type by applying a regression analysis to source test data of that unit.
According to this old calculation method, an emission rate from a power
plant is computed by:

E= X XX U (L )
i 7 Jk k (1)

where E is an emission over a given time k, U. ik is a unit function taking
the value 1 if j-th fuel type is burned at k th hour and 0 otherwise,

1J(L ) is an emission rate at Tload Lk for i-th generating unit burning
Jj-th fuel type.

The o1d calculation method described above has now been replaced with
a continuous emission monitoring (CEM) system. By continuously monitoring
NOx concentrations inside the stack, CEM yield more factual emission
readings than the old calculation method. However, CEM has its own
Timitations: a certain amount of down-time, periodic drifting from the
calibrated performance, relatively low precision (said to be +20%) and

decreased accuracy at low concentrations.

The 1983 SoCAB emissions inventory (SCAQMD 1986) reports basinwide
NO, emissions from electric utilities as 39.4 tons per day (TPD) on an
annual average base. This inventory estimate is said to be arrived at by
summing CEM-based emission values for the Department of Water and Power
(DWP) power plants and calculation-based emission values for the Southern
California Edison (SCE) power plants.

As a part of the inventory uncertainty determination project, a
district engineer was assigned to estimate uncertainty of the basinwide
power plant NOx emissions reported in the 1983 inventory. To do the task,
the engineer searched for data and information that indicated how compara-
ble the NOX emissions estimates arrived at from the CEM data and these
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from the calculation method are. Luckily, he found in the district
Tibrary old computer printouts recording daily and monthly NOx emissions
from all generating units of DWP power plants in the SoCAB. He also found
that SCE possessed similar data. From these data, the engineer construc-
ted Table 1 showing monthly emission estimates for the DWP power plants
and for the SCE power plants both by CEM and by the old calculation
method.

The engineer thought that if he could calculate the 1983 basinwide
power plant N0X emissions separately by the CEM method and by the calcu-
lation method, the true emission level would be found in between the two
estimated values. To this end, he calculated the following conversion
factors using Table 1:

CFD (CEM-based emission)/(Calculation-based emission)
317.8/303.7
1.046

CF

577.5/616.1
0.937

where CFD is the conversion factor for DWP power plants and CFS is that
for SCE power plants.

Although he knew of the existence of a few city-operated power plants
beside the DWP's and the SCE's in the SoCAB, the engineer assumed that 35
percent of the basin's power plant emissions came from the DWP's and the
remaining 65 percent came from the SCE's. Under this assumption, he
re-computed the 1983‘N0x emissions using the calculation method only as:

E = (O.35/CFD + 0.65) x 39.4

calc.

38.8 TPD
He also re-computed the 1983 NOX emissions using the CEM method only as:

E = (0.35 + 0.65 CFS) x 39.4

monit.
= 37.8 TPD



TABLE 1. MONTHLY NOx EMISSIONS FROM DWP AND SCE POWER
PLANTS IN THE SoCAB ESTIMATED FROM THE CEM AND
CALCULATION METHODS (A11 values in tons per month)

DWP Power Plants® SCE Power Plants®

Mo/Yr CEM CALC Mo/Yr CEM CALC
Aug 82 470.5 449.7 Aug 86 548.4 495.1
Sep 82 435.3 420.5 Sep 86 351.4 332.7
Oct 82 455.9 427 .6 Oct 86 621.7 621.7
Nov 82 345.9 331.2 Nov 86 467.7 531.4
Dec 82 404.7 399.7 Dec 86 423.8 489.8
Jan 83 320.0 338.1 Jan 87 639.8 658.9
Feb 83 354.5 321.8 Feb 87 699.4 699.1
Mar 83 443.3 358.8 Mar 87 867.1 862.8
Apr 83 127.0 100.1 Apr 87 594.5 710.8
May 83 150.6 156.5 May 87 468.0 534.7
Jun 83 119.1 141.0 Jun 87 655.0 724.8
Jul 83 186.6 199.6 Jul 87 593.5 731.7
Mean 317.8 303.7 Mean 577.5 616.1
s.d. 135.7 122.5 s.d. 138.4 1441

a Harbor, Haynes, Scattergood and Valley

b Huntington Beach, Alamitos, E1 Segundo, Redondo, Etiwanda, Highgrove

and San Bernardino




In comparing the re-computed values with the reported emission
values, the engineer wondered why both re-computed values were less than
the reported values. After some thinking, he decided to determine a
conversion factor that would apply to both DWP and SCE power plants. This
conversion factor is calculated as:

CF

(CEM-based emission)/{Calculation-based emission)
(317.8 + 577.5)/303.7 + 616.1)
0.973

Using this conversion factor, he re-calculated the 1983 NOx emissions

as:
Eca]c. = (0.35/CF + 0.65) x 39.4

= 39,8 TPD
Emonit. = (0.35 + 0.65 CF) x 39.4

38.7 TPD

In summary, the engineer now has three different estimates of the
1983 NOx emissions from all power plants in the SoCAB:

Upper Plausible Estimate 39.8 TPD
Basic Estimate 39.4 TPD
Lower Plausible Estimate 38.7 TPD

Even with these three estimates, he is unsure how to determine the uncer-
tainty of the reported emission value because he does not know how reli-
able the CEM and the calculation method are for estimating power plant
emissions. After some thinking, he has decided to accomplish this by
asking a panel of a few colleagues knowledgeable about this source cate-
gory to help formulate a judgment about the uncertainty in the basic
estimate. They responded to the following questions:
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Q1. On a scale of 100, what are the odds that the true level of NO
emissions from all power plants in this air basin is less than 39.
TPD?

Answer : chances in 100.

Q2. What are the odds that the true level of NO_ emissions from all power
plants in the air basin is less than 38.7 TPD?

Answer : chances in 100.
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EXHAUST GAS EMISSIONS FROM LIGHT DUTY AUTOS

In the South Coast Air Basin (SoCAB) the average annual emissions
from 1light duty autos were estimated for the latest inventory year of 1983
(SCAQMD 1986). In this emission estimation, the latest emission factor
model EMFAC7B was used for computing a composite emission factor while the
Direct Travel Impact Model (DTIM) was employed for computing vehicle miles
traveled (VMT), the number of trips generated and the average speed during
morning peak, afternoon peak, and off-peak hours. Because this was a
major inventory effort for the SoCAB, the most elaborate emission estima-
tion methed was used in computing composite emission factors, VMT, and the
number of trips generated in each hour of the day. Details of model input
data and options used are not known except that the ARB ran the EMFAC
model for composite emission factor calculations and the SCAG, the plan-
ning agency for the SoCAB, ran the DTIM model for VMT and vehicle-trip
simulations. The actual computer run was made on the 12th of April, 1986.
The resulting total organic gas (TOG) emissions are listed in Table 1.

TABLE 1. TOG EXHAUST EMISSIONS FROM LIGHT DUTY AUTOS
IN THE SOUTH COAST AIR BASIN
(A11 Values in Tons per Day)

Exhaust Type NON-CAT CAT DIESEL TOTAL

Running Exhaust 173 54 2 229
& Crank Case

Cold Start Exhaust 31 73 N 104

Hot Start Exhaust 13 12 N 26
Total Exhaust 217 139 3 359

N : Negligibly small

An analyst in the Air Quality Management District reviewed the
computational procedure used for mobile source emissions and found it
quite comprehensive. However, the analyst noted some discrepancy between
EMFAC/DTIM-predicted heavy duty truck content and that reported in
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Caltrans HPMS Report (1983) and an ARB report (Horie and Rapaport 1985) :
4.2% vs. 6.1%. The Tatter percentage was arrived at by taking a ratio of
the SoCAB total truck daily VMT of 12.3 x 106 to the four-county total
daily VMT of 200.3 x 106 for all vehicles. Assuming that the total VMT
were correct, the analyst figured out that the mis-estimate in truck
content caused an over-estimate of the TOG emission by 3% [ = (100 -
4.2)/(100 - 6.1}] or 11 ( = 359 x 0.03) tons per day (TPD). Thus, if the
correct truck content of 6.1% were used, the TOG emission from light duty
autos would be 348 TPD.

Recently, the analyst has learned that the EPA's Test and Evaluation
Branch is working on MOBILE4, an updated version of MOBILE3, the current
mobile emission model. A preliminary analysis of the new model indicates
that it tends to yield about 14% greater emission factor than the current
model (see Figure 1). Therefore, the analyst further adjusted his emis-
sion estimate as: '

348 X 1.14
= 397 TPD

In summary, the analyst now has three different estimates of the 1983
TOG exhaust emissions from 1light duty autos in the SoCAB:

Upper Plausible Estimate 397 TPD
Basic Estimate 359 TPD
Lower Plausible Estimate 348 TPD

Even with these three estimates, he is unsure how to determine the uncer-
tainty of the reported emission value. After some thinking, he has
decided to accomplish this by asking a panel of a few colleagues knowl-
edgeable about this source category to help formulate a judgment about the
uncertainty in the basic estimate. The questions are the following:
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Figure 1. Total Hydrocarbons, Light Duty Gasoline
Vehicles: MOBILE 3 vs. NEW
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Q1. On a scale of 100, what are the odds that the true level of TOG
exhaust emissions from all light duty autos in this air basin is less
than 394 TPD?

Answer : chances in 100.

Q2. What are the odds that the true level of TOG exhaust emissions from
all 1ight duty autos in the air basin is less than 342 TPD?

Answer : chances in 100,
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UNCERTAINTY WORKSHEET

NAME DATE

Three estimates for LDA exhaust emissions: 397, 359, 348 TPD

Mean of three estimates: m = 368 TPD

Standard deviation: = 25.7 TPD

Upper Level: m+ s = 394 TPD

Lower Level: m-s = 342 TPD
Probability for UL %

Probability for LL %

Upper Confidence Level @ 97.5% TPD

Lower Confidence Level @ 2.5% TPD
Subjectively evaluated mean: m, = TPD
Subjectively evaluated standard deviation: Sy = TPD
Subjectively evaluated bias: Bn = TPD
Coefficient of variation CV =

If CV 0.3, proceed to log-probability paper.

Upper Confidence Level @ 97.5% TPD

Lower Confidence Level @ 2.5% TPD
Subjectively evaluated mean: my = TPD
Subjectively evaluated standard deviation: Sy = TPD
Subjectively evaluated bias: B1 = TPD
Prefer: [ ] Normal [ ] Lognormal
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DRY CLEANING EMISSIONS

A district engineer was assigned to estimate TOG emissions from small
dry cleaning operations in San Bernardino County. Although large indus-
trial dry cleaners with annual TOG emissions of 25 tons or more are
already estimated in the district's major point source file, emissions
from commercial and coin-operated dry cleaners have yet to be estimated.

He first estimated the emissions using EPA's AP-42 emission factors,
namely, 1.3 1b/yr/capita for commercial cleaners and 0.4 1b/yr/capita for
coin-operated type. The EPA emission factor rating for both was B on a
scale of A through E, with A being the best. In making his estimate, he
randomly picked 100 residential telephone numbers from the county
telephone directories, and conducted a mini-questionnaire survey on this

sampie to learn the typical usage of commercial and coin-operated dry
cleaners. Results of the survey were:

Commercial only 35
Commercial and coin-operated 10
Coin-operated only 25
Never used 13
No answer _17

TOTAL 100

Assuming that every resident would use one of two types of dry cleaners,
he then estimated that 60% would use commercial dry cleaners and the
remaining 40% would use coin-operated machines. From this, he calculated

the TOG emissions using the January 1987 county population of 1,167,200 as
follows:

m
1]

(1.3 x 0.60 + 0.4 x 0.40) x 1,167,200/2,000/365
1.50 tons per day (TPD)

Upon review of this work, a colleague wondered whether the AP-42
emission factors are only for those who use a particular type of dry
cleaning service. After reading the AP-42 explanations on the emission
factors, the colleague concluded that both emission factors were meant to
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be applied to the total resident population. Therefore, the correct
emission calculation would be:

m
1

(1.3 + 0.4) x 1,167,200/2,000/365
2.72 TPD

The engineer is now in a quandary as to which method is correct. To
resolve this puzzling question, he searched for other estimation methods
and came across a recent ARB publication in which the county total dry
cleaning emissions from small dry cleaners with annual TOG emissions Tess
than 25 tons were given for eight counties in the San Joaquin Valley.
Table 1 lists these emission values along with January 1987 urban popu-
lation in each of these counties. In the table, the per-capita emission
value listed in the last column is computed from the county total emis-
sions and the resident population.

By applying the total resident population of 1,167,200 in San Bernar-
dino County to the per capita emissions in the table, the engineer arrived
at the following two estimates:

1. Use of the Fresno County per capita emission yields

E=1.59 x 1,167,200/2,000/365
= 2.54 TPD
2. Use of the mean per capita emission over the eight counties
yields
E=0.715 x 1,167,200/2,000/365

1.14 TPD

Of the two estimates, he thought that the latter estimate would be more
believable because the mean emission factor for the eight counties was
used instead of that of a particular county, Fresno.
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TABLE 1. COUNTYWIDE EMISSION FROM SMALL COMMERCIAL AND
COIN-OPERATED DRY CLEANERS IN THE SAN JOAQUIN

VALLEY.
1979 vVOC Per Capita
Emissions 1987 Resident Emission
County (ton/yr) Population (1b/yr/capita)

Fresno 468 588,300 1.59
Kern 212 496,200 0.85
Kings 28 85,700 0.65
Madera 22 79,300 0.55
Merced 22 166,400 0.26
San Joaquin 150 435,700 0.69
Stanislaus a7 320,600 0.61
Tulare 75 287,900 0.52
Mean 0.715

In summary, the engineer now has three different estimates of TOG

emissions from small dry cleaners in San Bernardino County:

Upper Plausible Estimate 2.72 TPD
Basic Estimate 1.50 TPD
Lower Plausible Estimate 1.14 TPD

Even with these three estimates, he is unsure how to provide a quantita-
tive measure of the reliability of his basic estimate. After some think-
ing, he has decided to accomplish this by asking a panel of a few col-
leagues knowledgeable about this source category to help formulate a
judgment about the uncertainty in the basic estimate.



The panel members will be asked to respond to the following two
questions:

Q1. On a scale of 100, what are the odds that the true Tlevel of TO0G
emissions from small commercial and coin-operated dry cleaners in
this county is less than 1.79 TPD?

Answer : chances in 100.

Q2. What are the odds that the true level of TOG emissions from smail dry
cleaners in the county is less than 0.83 TPD?

Answer : chances in 100.
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UNCERTAINTY WORKSHEET

NAME

Three estimates for dry cleaning emissions :

DATE

2.72, 1.50, 1.74 TPD

Mean of three estimates: m=1.79 TPD

Standard deviation: = 0.83 TPD

Upper Level: m+s =2,62 TPD

Lower Level: m=-s=0.96 TPD
Probability for UL %

Probability for LL %

Upper Confidence Level @ 97.5% TPD

Lower Confidence Level @ 2.5% TPD
Subjectively evaluated mean: . m, = TPD
Subjectively evaluated standard deviation: Sy = TPD
Subjectively evaluated bias: Bn = TPD
Coefficient of variation CV =

If CV 0.3, proceed to log-probability paper.

Upper Confidence Level @ 97.5% TPD

Lower Confidence Level @ 2.5% TPD
Subjective1y evaluated mean: m, = TPD
Subjectively evaluated standard deviation: Sy = TPD
Subjectively evaluated bias: B] = TPD
Prefer: [ ] Normal [ ] Lognormal
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